內容簡介
《4G:LTE/LTE-Advanced 寬帶移動通信技術(影印版)》基於獲得巨大成功的書籍《3G演進-HSPA與LTE》,新版集中關注LTE和LTE-Advanced(Rl0),對LTE的關鍵技術和LTE標準做瞭全麵的介紹,並對各種LTE技術詳細解釋其方法和采納理由。本書清晰地闡明瞭各種LTE關鍵技術,並深入地解釋瞭各種特定的LTE解決方案,因此,有助於讀者理解在移動寬帶産品和係統中如何實現和部署LTE。
包含瞭新增加到LTE無綫接入標準和技術(包括3GPPR10)中的全部細節;
清晰地解釋瞭支撐LTE的關鍵技術(包括OFDM和MIMO)的作用;
完整地涵蓋瞭提交到國際電聯無綫通信組的LTE-Advanced關鍵技術(包括LTE載波聚閤、擴展多天綫傳輸、中繼、異構網);
詳細地闡釋瞭LTE無綫接口結構、物理層、接入過程、廣播、射頻特性和係統性能。
Erik Dahlman、Stefan Parkvall和Johan Skold都是愛立信研究院資深研究員,自3G研究的初始階段就一直深入開展3G與4G技術的研發和標準化工作。他們是3G/4G領域的一流專傢,目前仍積極為3GPPLTE的標準化工作做著突齣的貢獻。
內頁插圖
目錄
Preface
Acknowledgements
Abbreviations and Acronyms
CHAPTER 1 Background of LTE
1.1 Introduction
1.2 Evolution of Mobile Systems Before LTE
1.2.1 The First 3G Standardization
1.3 ITU Activities
1.3.1 IMT-2000 and IMT-Advanced
1.3.2 Spectrum for IMT Systems
1.4 Drivers for LTE
1.5 Standardization of LTE
1.5.1 The Standardization Process
1.5.2 The 3GPP Process
1.5.3 The 3G Evolution to 4G
CHAPTER 2 High Data Rates in Mobile Communication
2.1 High Data Rates: Fundamental Constraints
2.1.1 High Data Rates in Noise-Limited Scenarios
2.1.2 Higher Data Rates in Interference-Limited Scenarios
2.2 Higher Data Rates Within a Limited Bandwidth: Higher-Order Modulation
2.2.1 Higher-Order Modulation in Combination with Channel Coding
2.2.2 Variations in Instantaneous Transmit Power
2.3 Wider Bandwidth Including Multi-Carrier Transmission
2.3.1 Multi-Carrier Transmission
CHAPTER 3 0FDM Transmission
3.1 Basic Principles of OFDM
3.2 OFDM Demodulation
3.3 OFDM Implementation Using IFFT/FFT Processing
3.4 Cyclic-prefix Insertion
3.5 Frequency-Domain Model of OFDM Transmission
3.6 Channel Estimation and Reference Symbols
3.7 Frequency Diversity with OFDM: Importance of Channel Coding
3.8 Selection of Basic OFDM Parameters
3.8.10FDM Subcarrier Spacing
3.8.2 Number of Subcarriers
3.8.3 Cyclic-Prefix Length
3.9 Variations in Instantaneous Transmission Power
3.10 OFDM as a User-Multiplexing and Multiple-Access Scheme
3.1 1 Multi-Cell Broadcast/Multicast Transmission and OFDM
CHAPTER 4 Wider-Band "Single-Carrier" Transmission
4.1 Equalization Against Radio-Channel Frequency Selectivity
4.1.1 Time-Domain Linear Equalization
4.1.2 Frequency-Domain Equalization
4.1.3 Other Equalizer Strategies
4.2 Uplink FDMA with Flexible Bandwidth Assignment
4.3 DFT-Spread OFDM
4.3.1 Basic Principles
4.3.2 DFTS-OFDM Receiver
4.3.3 User Multiplexing with DFTS-OFDM
4.3.4 Distributed DFFS-OFDM
CHAPTER 5 Multi-Antenna Techniques
5.1 Multi-Antenna Configurations
5.2 Benefits of Multi-Antenna Techniques
5.3 Multiple Receive Antennas
5.4 Multiple Transmit Antennas
5.4.1 Transmit-Antenna Diversity
5.4.2 Transmitter-Side Beam-Forming
5.5 Spatial Multiplexing
5.5.1 Basic Principles
5.5.2 Precoder-Based Spatial Multiplexing
5.5.3 Nonlinear Receiver Processing
CHAPTER 6 Scheduling, Link Adaptation, and Hybrid ARQ
6.1 Link Adaptation: Power and Rate Control
6.2 Channel-Dependent Scheduling
6.2.1 Downlink Scheduling
6.2.2 Uplink Scheduling
6.2.3 Link Adaptation and Channel-Dependent Scheduling in the Frequency Domain
6.2.4 Acquiring on Channel-State Information
6.2.5 Traffic Behavior and Scheduling
……
CHAPTER 7 LTE Radio Access: An Overview
CHAPTER 8 Radio-Interface Architecture.
CHAPTER 9 Physical Transmission Resources
CHAPTER 10 Downlink Physical-Layer Processing.
CHAPTER 11 Uplink Physical-Layer Processing.
CHAPTER 12 Retransmission Protocols.
CHAPTER 13 Power Control, Scheduling, and Interference Handling
CHAPTER 14 Access Procedures.
CHAPTER 15 MultimediaBroadcastJMulticast Services
CHAPTER 16 Relaying
CHAPTER 17 Spectrum and RF Characteristics
CHAPTER 18 Performance
CHAPTER 19 Other Wireless Communications Systems
CHAPTER 20 Final Thoughts
References
Index
精彩書摘
The work on LTE was initiated in late 2004 with the overall aim of providing a new radio-accesstechnology focusing on packet-switched data only. The first phase of the 3GPP work on LTE was todefine a set of performance and capability targets for LTE [10]. This included targets on peak datarates, user/system throughput, spectral efficiency, and control/user-plane latency. In addition, require-ments were also set on spectrum fiexibility, as well as on interaction/compatibility with other 3GPPradio-access technologies (GSM, WCDMAfHSPA, and TD-SCDMA).
Once the targets were set, 3GPP studies on the feasibility of different technical solutions consid-ered for LTE were followed by development of the detailed specifications. The first release of theLTE specifications, release 8, was completed in the spring of 2008 and commercial network operationbegan in late 2009. Release 8 has then been followed by additional LTE releases, introducing addi-tional functionality and capabilities in different areas, as illustrated in Figure.
7.1.In parallel to the development of LTE, there has also been an evolution of the overall 3GPPnetwork architecture, termed System Architecture Evolution (SAE), including both the radio-accessnetwork and the core network. Requirements were also set on the architecture evolution, leading toa new flat radio-access-network architecture with a single type of node, the eNodeBl, as well as a newcore-network architecture. An excellent descnption of the LTE-associated core-network architecture,the Evolved Packet Core (EPC), can be found in [9].
The remaining part of this chapter provides an overview of LTE up to and including release 10.The most important technologies used by LTE release 8 - including transmission schemes, schedul-ing, multi-antenna support, and spectrum flexibility - are covered, as well as the additional featuresintroduced in LTE releases 9 and 10. The chapter can either be read on its own to get a high-leveloverview of LTE, or as an introduction to the subsequent chapters.
The following chapters, Chapters 8-18, then contain a detailed description of the LTE radio-accesstechnology. Chapter 8 provides an overview of the LTE protocol structure, including RLC, MAC, andthe physical layer, explaining the logical and physical channels, and the related data flow. The time-frequency structure on which LTE is based is covered in Chapter 9, followed by a detailed descriptionof the physical layer for downlink and uplink transmission in Chapters 10 and 11 respectively. Chapter12 contains a description of the retransmission mechanisms used in LTE, followed by a discussion onpower control, scheduling, and interference management in Chapter 13. Access procedures, necessaryfor a terminal to connect to the network, are the topic of Chapter 14. Chapter 15 covers the multi-cast/broadcast functionality of LTE and Chapter 16 describes relaying operation. Chapter 17 addresseshow radio-frequency (RF) requirements are defined in LTE, taking into account the spectrum flexibility.Finally, Chapter 18 contains an assessment of the system performance of LTE.
……
前言/序言
《4G:LTE/LTE-Advanced 寬帶移動通信技術(影印版)》 核心內容概述: 本書深入剖析瞭第四代(4G)移動通信技術的基石——LTE(Long-Term Evolution)及其演進版本LTE-Advanced。它係統地介紹瞭4G網絡的各個方麵,從底層物理層到高層協議棧,從核心網架構到終端設備設計,全麵展現瞭這項革命性技術的精髓。本書不僅關注技術的理論基礎,更強調其實際應用和發展趨勢,旨在為讀者提供一個完整、深入且前沿的4G知識體係。 技術原理與架構: 在物理層,本書詳細闡述瞭LTE所采用的關鍵技術,包括: OFDMA(Orthogonal Frequency Division Multiple Access)和SC-FDMA(Single Carrier Frequency Division Multiple Access): 這兩種多址技術是LTE實現高速率和高頻譜效率的核心。OFDMA在下行鏈路中能夠有效應對多徑乾擾,而SC-FDMA則在保證良好下行鏈路性能的同時,降低瞭上行鏈路的峰均值比(PAPR),節省瞭終端功耗。本書將深入講解這兩種技術的原理、幀結構、子載波分配、信道編碼(如Turbo碼和捲積碼)以及解調等關鍵環節。 MIMO(Multiple-Input Multiple-Output)技術: MIMO技術通過在發送端和接收端使用多個天綫,極大地提升瞭頻譜效率和鏈路可靠性。本書將詳細介紹不同類型的MIMO(如空間復用、空間分集、波束成形)在LTE中的應用,以及相關的預編碼、信道估計和解碼算法。 信道編碼與調製: LTE采用瞭先進的信道編碼方案,如Turbo碼用於數據信道,捲積碼(CTC)用於控製信道,以及QPSK、16QAM、64QAM甚至256QAM等高階調製技術。本書將分析這些編碼和調製方案如何平衡數據傳輸的可靠性和速率,以及自適應調製與編碼(AMC)在動態調整傳輸參數以適應信道變化方麵的作用。 資源調度: LTE的調度算法是實現高效資源利用和滿足多樣化業務需求的關鍵。本書將深入探討下行鏈路和上行鏈路的調度策略,包括最大比例公平(PF)、比例公平(PF)以及支持服務質量(QoS)的調度方法,並分析其對係統吞吐量、時延和用戶體驗的影響。 在核心網層麵,本書著重介紹瞭LTE的核心網架構——EPC(Evolved Packet Core)。EPC與傳統的2G/3G核心網有著顯著的差異,其扁平化的架構和基於IP的通信方式帶來瞭更高的效率和更低的延遲。本書將詳細講解EPC的關鍵網元及其功能: MME(Mobility Management Entity): 負責用戶注冊、移動性管理、信令加密和鑒權等功能。 S-GW(Serving Gateway): 作為用戶麵數據傳輸的錨點,負責在UE和外部網絡之間轉發數據包。 P-GW(PDN Gateway): 負責IP地址分配、策略執行和用戶數據會話管理。 HSS(Home Subscriber Server): 存儲用戶身份信息、鑒權信息和訂閱數據。 eNodeB(evolved NodeB): LTE網絡中的基站,負責無綫資源的調度、傳輸和接收。 本書還將探討EPC的接口協議,如S1(eNodeB與MME/S-GW之間)、S6a(MME與HSS之間)、S11(MME與S-GW之間)和S5/S8(S-GW與P-GW之間)等,以及這些接口如何實現用戶數據的無縫傳輸和移動性管理。 LTE-Advanced 的演進: 本書不僅限於LTE,還深入介紹瞭LTE-Advanced,這是LTE的進一步演進,旨在提供更高的峰值速率、更低的延遲和更高的頻譜效率。LTE-Advanced引入瞭多項關鍵增強技術: 載波聚閤(Carrier Aggregation, CA): CA允許多個載波(連續或不連續)在時間和頻率上聚閤,從而大幅提高用戶的數據傳輸速率。本書將詳細介紹CA的原理、不同聚閤模式(intra-band contiguous/non-contiguous, inter-band)以及其對吞吐量和終端設計的影響。 MIMO 的增強: LTE-Advanced對MIMO技術進行瞭進一步的增強,引入瞭更高階的MIMO技術,如2x2 MIMO、4x4 MIMO,以及多用戶MIMO(MU-MIMO)和協作多點傳輸(CoMP)等技術,以進一步提升頻譜效率和覆蓋性能。 更優化的調度與協議: LTE-Advanced在調度算法和協議層麵進行瞭優化,以支持更低的延遲和更高的數據速率,例如支持更短的傳輸時間間隔(TTI)和更精細的資源調度。 C-RAN(Cloud Radio Access Network)和異構網絡(HetNets): 本書還將探討LTE-Advanced如何與C-RAN等新興網絡架構結閤,以及如何構建和優化異構網絡,以提高網絡容量和覆蓋範圍。 終端設備與網絡部署: 本書的另一重要組成部分是探討4G終端設備的設計與實現。從射頻前端設計、基帶處理到功耗管理,都將涉及到LTE/LTE-Advanced終端設備的復雜性。讀者將瞭解到終端設備如何支持多模多頻、高階調製與編碼、以及復雜的MIMO配置。 同時,本書也將觸及4G網絡的部署和規劃方麵的議題。雖然不深入到具體的基站選址和覆蓋仿真,但會涉及LTE網絡部署的總體策略,如宏基站、微基站、皮基站的協同部署,以及室內覆蓋解決方案等,以期為讀者提供一個更全麵的4G網絡圖景。 應用與未來展望: 本書的最後部分將著眼於4G技術所帶來的應用和服務,以及對移動通信産業的深遠影響。從高清視頻流、移動遊戲、物聯網(IoT)到新興的增強現實(AR)和虛擬現實(VR)應用,4G為這些服務的實現提供瞭堅實的基礎。 此外,本書還將對4G技術的未來發展趨勢進行展望,例如與5G技術的融閤、嚮更高層協議演進的可能性,以及4G技術在特定場景(如企業專網、車聯網)中的持續作用。 目標讀者: 本書適閤於通信工程、電子工程、計算機科學等相關專業的學生,以及在電信運營商、設備製造商、研發機構等從事移動通信技術研究、開發、設計、測試和維護的工程師和技術人員。對於希望深入瞭解4G移動通信技術原理、架構和發展趨勢的專業人士,本書將是一個不可或缺的參考。 總結: 《4G:LTE/LTE-Advanced 寬帶移動通信技術(影印版)》是一本係統、深入且前沿的技術著作,它全麵覆蓋瞭4G移動通信的各個技術層麵,從基礎原理到核心技術,從網絡架構到終端設計,再到LTE-Advanced的演進和應用。本書旨在為讀者構建一個紮實、全麵的4G技術知識體係,使其能夠深刻理解這項改變瞭我們通信方式的技術,並為未來的移動通信技術發展奠定堅實的基礎。