组合数学(英文版 第5版)

组合数学(英文版 第5版) 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
[美] 布鲁迪 著

下载链接在页面底部
下载链接1
下载链接2
下载链接3
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-05-05

图书介绍


出版社: 机械工业出版社
ISBN:9787111265252
版次:5
商品编码:10059101
品牌:机工出版
包装:平装
丛书名: 经典原版书库
开本:16开
出版时间:2009-03-01
用纸:胶版纸
页数:605
正文语种:英语


类似图书 点击查看全场最低价

相关图书





图书描述

编辑推荐

  

  《组合数学(英文版)(第5版)》是系统阐述组合数学基础,理论、方法和实例的优秀教材。出版30多年来多次改版。被MIT、哥伦比亚大学、UIUC、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影响。也是相关学科的主要参考文献之一。《组合数学(英文版)(第5版)》侧重于组合数学的概念和思想。包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配,实验设计、图)等。深入浅出地表达了作者对该领域全面和深刻的理解。除包含第4版中的内

内容简介

  《组合数学(英文版)(第5版)》英文影印版由Pearson Education Asia Ltd,授权机械工业出版社少数出版。未经出版者书面许可,不得以任何方式复制或抄袭奉巾内容。仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中同台湾地区)销售发行。《组合数学(英文版)(第5版)》封面贴有Pearson Education(培生教育出版集团)激光防伪标签,无标签者不得销售。English reprint edition copyright@2009 by Pearson Education Asia Limited and China Machine Press.
  Original English language title:Introductory Combinatorics,Fifth Edition(ISBN978—0—1 3-602040-0)by Richard A.Brualdi,Copyright@2010,2004,1999,1992,1977 by Pearson Education,lnc. All rights reserved.
  Published by arrangement with the original publisher,Pearson Education,Inc.publishing as Prentice Hall.
  For sale and distribution in the People’S Republic of China exclusively(except Taiwan,Hung Kong SAR and Macau SAR).

作者简介

  Richard A.Brualdi,美国威斯康星大学麦迪逊分校数学系教授(现已退休)。曾任该系主任多年。他的研究方向包括组合数学、图论、线性代数和矩阵理论、编码理论等。Brualdi教授的学术活动非常丰富。担任过多种学术期刊的主编。2000年由于“在组合数学研究中所做出的杰出终身成就”而获得组合数学及其应用学会颁发的欧拉奖章。

内页插图

目录

1 What Is Combinatorics?
1.1 Example:Perfect Covers of Chessboards
1.2 Example:Magic Squares
1.3 Example:The Fou r-CoIor Problem
1.4 Example:The Problem of the 36 C)fficers
1.5 Example:Shortest-Route Problem
1.6 Example:Mutually Overlapping Circles
1.7 Example:The Game of Nim
1.8 Exercises

2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations(Subsets)of Sets
2.4 Permutations ofMUltisets
2.5 Cornblnations of Multisets
2.6 Finite Probability
2.7 Exercises

3 The Pigeonhole Principle
3.1 Pigeonhole Principle:Simple Form
3.2 Pigeon hole Principle:Strong Form
3.3 A Theorem of Ramsey
3.4 Exercises

4 Generating Permutations and Cornbinations
4.1 Generating Permutations
4.2 Inversions in Permutations
4.3 Generating Combinations
4.4 Generating r-Subsets
4.5 PortiaI Orders and Equivalence Relations
4.6 Exercises

5 The Binomiaf Coefficients
5.1 Pascals Triangle
5.2 The BinomiaI Theorem
5.3 Ueimodality of BinomiaI Coefficients
5.4 The Multinomial Theorem
5.5 Newtons Binomial Theorem
5.6 More on Pa rtially Ordered Sets
5.7 Exercises

6 The Inclusion-Exclusion P rinciple and Applications
6.1 The In Clusion-ExclusiOn Principle
6.2 Combinations with Repetition
6.3 Derangements+
6.4 Permutations with Forbidden Positions
6.5 Another Forbidden Position Problem
6.6 M6bius lnverslon
6.7 Exe rcises

7 Recurrence Relations and Generating Functions
7.1 Some Number Sequences
7.2 Gene rating Functions
7.3 Exponential Generating Functions
7.4 Solving Linear Homogeneous Recurrence Relations
7.5 Nonhomogeneous Recurrence Relations
7.6 A Geometry Example
7.7 Exercises

8 Special Counting Sequences
8.1 Catalan Numbers
8.2 Difference Sequences and Sti rling Numbers
8.3 Partition Numbers
8.4 A Geometric Problem
8.5 Lattice Paths and Sch rSder Numbers
8.6 Exercises Systems of Distinct ReDresentatives

9.1 GeneraI Problem Formulation
9.2 Existence of SDRs
9.3 Stable Marriages
9.4 Exercises

10 CombinatoriaI Designs
10.1 Modular Arithmetic
10.2 Block Designs
10.3 SteinerTriple Systems
10.4 Latin Squares
10.5 Exercises

11 fntroduction to Graph Theory
11.1 Basic Properties
11.2 Eulerian Trails
11.3 Hamilton Paths and Cycles
11.4 Bipartite Multigraphs
11.5 Trees
11.6 The Shannon Switching Game
11.7 More on Trees
11.8 Exercises

12 More on Graph Theory
12.1 Chromatic Number
12.2 Plane and Planar Graphs
12.3 A Five-Color Theorem
12.4 Independence Number and Clique Number
12.5 Matching Number
12.6 Connectivity
12.7 Exercises

13 Digraphs and Networks
13.1 Digraphs
13.2 Networks
13.3 Matchings in Bipartite Graphs Revisited
13.4 Exercises

14 Polya Counting
14.1 Permutation and Symmetry Groups
14.2 Bu rnsides Theorem
14.3 Polas Counting Formula
14.4 Exercises
Answers and Hints to Exercises

精彩书摘

  Chapter 3
  The Pigeonhole Principle
  We consider in this chapter an important, but elementary, combinatorial principle that can be used to solve a variety of interesting problems, often with surprising conclusions. This principle is known under a variety of names, the most common of which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox principle.1 Formulated as a principle about pigeonholes, it says roughly that if a lot of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be occupied by two or more pigeons. A more precise statement is given below.
  3.1 Pigeonhole Principle: Simple FormThe simplest form of the pigeonhole principle is tile following fairly obvious assertion.Theorem 3.1.1 If n+1 objects are distributed into n boxes, then at least one box contains two or more of the objects.
  Proof. The proof is by contradiction. If each of the n boxes contains at most one of the objects, then the total number of objects is at most 1 + 1 + ... +1(n ls) = n.Since we distribute n + 1 objects, some box contains at least two of the objects.
  Notice that neither the pigeonhole principle nor its proof gives any help in finding a box that contains two or more of the objects. They simply assert that if we examine each of the boxes, we will come upon a box that contains more than one object. The pigeonhole principle merely guarantees the existence of such a box. Thus, whenever the pigeonhole principle is applied to prove the existence of an arrangement or some phenomenon, it will give no indication of how to construct the arrangement or find an instance of the phenomenon other than to examine all possibilities.

前言/序言

  I have made some substantial changes in this new edition of Introductory Combinatorics, and they are summarized as follows:
  In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been added to illustrate some of the counting techniques in later chapters. Previously the content of this section occured in Chapter 7.
  The old section on cutting a cube in Chapter 1 has been deleted, but the content appears as an exercise.
  Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chapter 3. Chapter 3 in the previous edition, on permutations and combinations, is now Chapter 2. Pascals formula, which in the previous edition first appeared in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use of the term combination as it applies to a set, using the essentially equivalent term of subset for clarity. However, in the case of multisets, we continue to use combination instead of, to our mind, the more cumbersome term submultiset.
  Chapter 2 now contains a short section (Section 3.6) on finite probability.
  Chapter 3 now contains a proof of Ramseys theorem in the case of pairs.
  Some of the biggest changes occur in Chapter 7, in which generating functions and exponential generating functions have been moved to earlier in the chapter (Sections 7.2 and 7.3) and have become more central.
  The section on partition numbers (Section 8.3) has been expanded.
  Chapter 9 in the previous edition, on matchings in bipartite graphs, has undergone a major change. It is now an interlude chapter (Chapter 9) on systems of distinct representatives (SDRs)——the marriage and stable marriage problemsand the discussion on bipartite graphs has been removed.
  As a result of the change in Chapter 9, in the introductory chapter on graph theory (Chapter 11), there is no longer the assumption that bipartite graphs have been discussed previously.
组合数学(英文版 第5版) 下载 mobi epub pdf txt 电子书 格式

组合数学(英文版 第5版) mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

组合数学(英文版 第5版) 下载 mobi pdf epub txt 电子书 格式 2025

组合数学(英文版 第5版) 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

不错,好书,字有点小

评分

评分

同学推荐我买的这个果然不错,花了2个通宵通读了一遍!同学推荐我买的这个果然不错! 真心给力的一本书,喜欢这个作者!书质量很好,纸张不错!而且是活动买的,便宜啊。。。京那个东出品。正版。。。收藏用。物流挺好,派送迅速。快递态度ok。送货上门,服务好 速度很快,包装精美,每一本都有塑封,书很新 今天我在网上买的几本书送到了。取书的时候,忽然想起一家小书店,就在我们大院对面的街上,以前我常去,书店的名字毫无记忆,但店里的女老板我很熟,每次需要什么书都先给她打电话说好,晚上散步再去取。我们像朋友一样聊天。 坦白说这是我近几年来花最多时间去读的一本书,两天两万不吃不睡,50个小时时间一气呵成看完--回肠荡气、满腹沉重、欲罢不能。知道自己才疏学浅,为这样的书写评价不免有些班门弄斧的嫌疑,但是不写实在是对不住我两个个晚通宵读了这样一本好书,好在笔记只是自己的笔记而已。喜欢这本书的,看过了就过了,没有读过且不敢兴趣的,暂且就此止步就是。 我对所有事情都有兴趣,所以我经常上当,在一个冷漠的社会里,你的热情在他们眼睛里就是不成熟。他们为面子活,你为兴趣活,你觉得你这样很开心,他们觉得你很无聊;你觉得你很真诚,他们觉得你在标榜自己。所以,我现在即使有兴趣也会装做“平常心”的样子,只是为了满足大多数人的思维方式,因为只有这样,他们才觉得我这个人比较可靠。激情永远不能放在口头上,放在口头上就是闷骚——马上就给你扣帽子。你必须一个巴掌上去,给人看到五根手指头,他们才觉得你和他们一样。一样了,接下去才可以交流。不一样就要培养,培养不出,就是你领不清——人生除了物欲和强迫之外,几乎一无所有。即便如此,还要相互误读、有时夹带了各种自嘲与挖苦。难怪当我读过这本书之后,竟会流泪。我的生命接下去的一切似乎只剩下白描了。我不会缝殓衣,也不会做小金鱼,更不会升天。杀掉三千多人对我来说也只是一个数字而已,我是多么渴望生活呀,但生活却连看也不看我一眼,我被禁锢在羊皮纸里,因为我很孤独;因为我很孤独,所以我只能去那个地方…… 天马流星拳、庐山升龙霸、钻石星尘拳,一个个熟悉的名称,让人联想起那个上课在桌下偷偷看漫画,体育课在操场操练的动作,好书,值得推荐!小时候爱看,但没钱,也就一直没能买齐。长大后赚钱了,所以就买了。不是当年小时候看的版本,不过有机会买到一整套回味一下还是不错的。 所感所悟一一精彩呈现,得此鸳鸯谱,闪着智慧幽默的光。鸳鸯谱,靠谱。非常赞!正品!物流超快!好评!1111111111

评分

,

评分

评分

可以

评分

类似图书 点击查看全场最低价

组合数学(英文版 第5版) mobi epub pdf txt 电子书 格式下载 2025


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有