內容簡介
     It is a tribute to our profession that a textbook that was current in 1999 is starting to feel old. The work for the first edition of Monte Carlo Statistical Methods (MCSM1) was finished in late 1998, and the advances made since then, as well as our level of understanding of Monte Carlo methods, have grown a great deal. Moreover, two other things have happened. Topics that just made it into MCSM1 with the briefest treatment (for example, perfect sampling) have now attained a level of importance that necessitates a much more thorough treatment. Secondly, some other methods have not withstood the test of time or, perhaps, have not yet been fully developed, and now receive a more appropriate treatment.
  When we worked on MCSM1 in the mid-to-late 90s, MCMC algorithms were already heavily used, and the flow of publications on this topic was atsuch a high level that the picture was not only rapidly changing, but also  necessarily incomplete. Thus, the process that we followed in MCSM1 was that of someone who was thrown into the ocean and was trying to grab onto the biggest and most seemingly useful objects while trying to separate the flotsam from the jetsam. Nonetheless, we also felt that the fundamentals of many of these algorithms were clear enough to be covered at the textbook alevel, so we" swam on.     
作者簡介
       作者:(法國)羅伯特(ChristianP.Robert)(法國)GeorgeCasella     
內頁插圖
          目錄
   Preface to the Second Edition
Preface to the First Edition
1 Introduction
1.1 Statistical Models
1.2 Likelihood Methods
1.3 Bayesian Methods
1.4 Deterministic Numerical Methods
1.4.1 Optimization
1.4.2 Integration
1.4.3 Comparison
1.5 Problems
1.6 Notes
1.6.1 Prior Distributions
1.6.2 Bootstrap Methods
2 Random Variable Generation
2.1 Introduction
2.1.1 Uniform Simulation
2.1.2 The Inverse Transform
2.1.3 Alternatives
2.1.4 Optimal Algorithms
2.2 General Transformation Methods
2.3 Accept-Reject Methods
2.3.1 The Fundamental Theorem of Simulation
2.3.2 The Accept-Reject Algorithm
2.4 Envelope Accept-Reject Methods
2.4.1 The Squeeze Principle
2.4.2 Log-Concave Densities
2.5 Problems
2.6 Notes
2.6.1 The Kiss Generator
2.6.2 Quasi-Monte Carlo Methods
2.6.3 Mixture RepresentatiOnS
3 Monte Carlo Integration
3.1 IntroduCtion
3.2 Classical Monte Carlo Integration
3.3 Importance Sampling
3.3.1 Principles
3.3.2 Finite Variance Estimators
3.3.3 Comparing Importance Sampling with Accept-Reject
3.4 Laplace Approximations
3.5 Problems
3.6 Notes
3.6.1 Large Deviations Techniques
3.6.2 The Saddlepoint Approximation
4 Controling Monte Carlo Variance
4.1 Monitoring Variation with the CLT
4.1.1 Univariate Monitoring
4.1.2 Multivariate Monitoring
4.2 Rao-Blackwellization
4.3 Riemann Approximations
4.4 Acceleration Methods
4.4.1 Antithetic Variables
4.4.2 Contr01 Variates
4.5 Problems
4.6 Notes
4.6.1 Monitoring Importance Sampling Convergence
4.6.2 Accept-Reject with Loose Bounds
4.6.3 Partitioning
5 Monte Carlo Optimization
5.1 Introduction
5.2 Stochastic Exploration
5.2.1 A Basic Solution
5.2.2 Gradient Methods
5.2.3 Simulated Annealing
5.2.4 Prior Feedback
5.3 Stochastic Approximation
5.3.1 Missing Data Models and Demarginalization
5.3.2 Thc EM Algorithm
5.3.3 Monte Carlo EM
5.3.4 EM Standard Errors
5.4 Problems
5.5 Notes
5.5.1 Variations on EM
5.5.2 Neural Networks
5.5.3 The Robbins-Monro procedure
5.5.4 Monte Carlo Approximation
6 Markov Chains
6.1 Essentials for MCMC
6.2 Basic Notions
6.3 Irreducibility,Atoms,and Small Sets
6.3.1 Irreducibility
6.3.2 Atoms and Small Sets
6.3.3 Cycles and Aperiodicity
6.4 Transience and Recurrence
6.4.1 Classification of Irreducible Chains
6.4.2 Criteria for Recurrence
6.4.3 Harris Recurrence
6.5 Invariant Measures
6.5.1 Stationary Chains
6.5.2 Kac’s Theorem
6.5.3 Reversibility and the Detailed Balance Condition
6.6 Ergodicity and Convergence
6.611 Ergodicity
6.6.2 Geometric Convergence
6.6.3 Uniform Ergodicity
6.7 Limit Theorems
6.7.1 Ergodic Theorems
6.7.2 Central Limit Theorems
6.8 Problems
6.9 Notes
6.9.1 Dri允Conditions
6.9.2 Eaton’S Admissibility Condition
6.9.3 Alternative Convergence Conditions
6.9.4 Mixing Conditions and Central Limit Theorems
6.9.5 Covariance in Markov Chains
7 The Metropolis-Hastings Algorithm
7.1 The MCMC Principle
7.2 Monte Carlo Methods Based on Markov Chains
7.3 The Metropolis-Hastings algorithm
7.3.1 Definition
7.3.2 Convergence Properties
7.4 The Independent Metropolis-Hastings Algorithm
7.4.1 Fixed Proposals
7.4.2 A Metropolis-Hastings Version of ARS
7.5 Random walks
7.6 Optimization and Contr01
7.6.1 Optimizing the Acceptance Rate
7.6.2 Conditioning and Accelerations
7.6.3 Adaptive Schemes
7.7 Problems
7.8 Nores
7.8.1 Background of the Metropolis Algorithm
7.8.2 Geometric Convergence of Metropolis-Hastings Algorithms
7.8.3 A Reinterpretation of Simulated Annealing
7.8.4 RCference Acceptance Rates
7.8.5 Langevin Algorithms
8 The Slice Sampler
8.1 Another Look at the Fundamental Theorem
8.2 The General Slice Sampler
8.3 Convergence Properties of the Slice Sampler
8.4 Problems
8.5 Notes
8.5.1 Dealing with Di伍cult Slices
9 The Two-Stage Gibbs Sampler
9.1 A General Class of Two-Stage Algorithms
9.1.1 From Slice Sampling to Gibbs Sampling
9.1.2 Definition
9.1.3 Back to the Slice Sampler
9.1.4 The Hammersley-Clifford Theorem
9.2 Fundamental Properties
9.2.1 Probabilistic Structures
9.2.2 Reversible and Interleaving Chains
9.2.3 The Duality Principle
9.3 Monotone Covariance and Rao-Btackwellization
9.4 The EM-Gibbs Connection
9.5 Transition
9.6 Problems
9.7 Notes
9.7.1 Inference for Mixtures
9.7.2 ARCH Models
10 The Multi-Stage Gibbs Sampler
10.1 Basic Derivations
10.1.1 Definition
10.1.2 Completion
……
11 Variable Dimension Models and Reversible Jump Algorithms
12 Diagnosing Convergence
13 Perfect Sampling
14 Iterated and Sequential Importance Sampling
A Probability Distributions
B Notation
References
Index of Names
Index of Subjects      
前言/序言
     He sat,continuing to look down the nave,when suddenly the solution to the problem just seemed to present itself.It was so simple,SO obvious he just started to laugh——P.C.Doherty.Satan in St Marys
  Monte Carlo statistical methods,particularly those based on Markov chains,have now matured to be part of the standard set of techniques used by statisticians.This book is intended to bring these techniques into the classroom. being(we hope)a self-contained logical development of the subject,with all concepts being explained in detail.and all theorems.etc.having detailed proofs.There is also an abundance of examples and problems,relating the concepts with statistical practice and enhancing primarily the application of simulation techniques to statistical problems of various difficulties.
  This iS a textbook intended for a second-year graduate course.We do not assume that the reader has any familiarity with Monte Carlo techniques (such as random variable generation)or with any Markov chain theory. We do assume that the reader has had a first course in statistical theory at the level of Statistica!Inference bY Casella and Berger(1990).Unfortunately,a few times throughout the book a somewhat more advanced notion iS needed.We have kept these incidents to a minimum and have posted warnings when they occur.While this iS a book on simulation.whose actual implementation must be processed through a computer,no requirement lS made on programming skills or computing abilities:algorithms are presented in a program-like format but in plain text rather than in a specific programming language.(Most of the examples in the book were actually implemented in C.with the S-Plus graphical interface.)    
				
 
				
				
					《隨機過程與應用分析》  導論:理解隨機性在現代科學中的核心地位  在當代科學、工程、金融乃至社會科學的研究領域中,我們越來越頻繁地麵臨著由復雜係統、不確定性數據和高維空間帶來的挑戰。許多實際問題無法通過精確的解析方法求解,轉而依賴於對隨機現象的模擬、估計與推斷。本書《隨機過程與應用分析》正是為瞭填補這一知識空白而精心編撰的教材與參考書。它旨在為讀者構建一個堅實的概率論和隨機過程理論基礎,並深入探討如何將這些理論應用於解決現實世界中的復雜問題。  本書的視角著重於從隨機過程(Stochastic Processes)的宏觀結構齣發,而非僅僅停留在單次隨機試驗的分析層麵。我們認為,理解係統隨時間演化或狀態空間變化的內在規律,是進行有效預測和決策的關鍵。  第一部分:概率論與隨機變量的深度重構  本書的開篇並非簡單重復基礎概率論的公式堆砌,而是側重於從測度論的角度對概率空間進行嚴謹的數學構建,為後續隨機過程的學習打下堅實的理論基石。  第1章:概率論的嚴謹基礎與測度論視角  本章首先迴顧瞭概率、隨機變量和期望的定義,但核心在於引入$sigma$-代數、可測函數以及勒貝格積分的概念。我們探討瞭隨機變量的分類(離散、連續及混閤型)及其概率分布函數的性質。重點講解瞭收斂概念在概率論中的重要性,包括依概率收斂(Convergence in Probability)、依分布收斂(Convergence in Distribution)和幾乎必然收斂(Almost Sure Convergence),並詳細分析瞭它們的相互關係和應用場景。  第2章:多維隨機變量與聯閤分布的復雜結構  本章深入分析瞭多維隨機嚮量的性質。除瞭傳統的聯閤概率密度函數(PDF)和聯閤纍積分布函數(CDF),我們著重討論瞭邊緣分布的推導以及條件期望的構造。條件期望被視為在給定信息下的最佳無偏估計器,我們在本章中建立瞭其數學形式。此外,獨立性檢驗、協方差矩陣的結構分析,以及正態分布在二維和高維空間中的特殊地位,都將得到詳盡的闡述。  第3章:大數定律與中心極限定理的現代解釋  作為概率論的基石,本章對兩大定律進行瞭深入探討。我們不僅展示瞭伯努利大數定律和柯爾莫哥洛夫大數定律的證明思想,還詳細區分瞭弱大數定律和強大數定律的適用條件。在中心極限定理部分,我們超越瞭經典的正態近似,引入瞭高階矩近似(如Edgeworth展開)的概念,以更好地評估近似誤差,這對於需要高精度估計的工程應用至關重要。  第二部分:隨機過程的動力學分析  這是本書的核心部分,關注係統隨時間演化的隨機規律。我們根據過程的性質(如時間是否連續、狀態空間是否離散)進行係統分類討論。  第4章:離散時間隨機過程與鞅論基礎  本章從離散時間序列(如時間步長固定的數據流)入手。我們引入瞭馬爾可夫鏈(Markov Chains)的概念,詳細分析瞭其轉移概率矩陣、平穩分布(Stationary Distribution)的求解方法,以及不可約性、遍曆性和狀態分類(常返、瞬態)。隨後,本書引入瞭鞅(Martingale)的概念,將其視為在信息不斷增加下,期望值保持不變的公平過程。鞅的停止時間定理(Optional Stopping Theorem)將被用於金融定價中的無套利原則驗證。  第5章:連續時間馬爾可夫過程與泊鬆過程  本章將時間維度擴展到連續。我們重點研究連續時間馬爾可夫鏈(CTMC),通過微分方程(如Kolmogorov前嚮和後嚮方程)來描述其演化。生成無窮小矩陣(Infinitesimal Generator)的構建是本章的理論重點。緊接著,我們對泊鬆過程進行瞭全麵剖析,包括其到達間隔時間的指數分布特性、復閤泊鬆過程的應用,以及它在事件計數模型中的核心地位。  第6章:布朗運動與隨機微積分的引入  布朗運動(Wiener Process)是描述連續尺度隨機現象的基石。本章詳細介紹其增量獨立性、平穩性、連續軌道特性。隨後,我們將自然地過渡到隨機微積分。我們詳細闡述瞭伊藤積分(Itô Integral)的定義、構造及其重要性質,包括伊藤公式(Itô's Formula),這是將傳統微積分工具應用於隨機微分方程(SDEs)的橋梁。  第7章:隨機微分方程(SDEs)及其解法  本章緻力於應用隨機微積分解決實際問題。我們考察瞭幾種重要的SDE模型,如幾何布朗運動(常用於股票價格建模)和Ornstein-Uhlenbeck過程。對於SDEs的求解,我們將側重於數值近似方法,如歐拉-丸山法(Euler-Maruyama Method),並討論其收斂性和誤差分析,為計算機模擬做好準備。  第三部分:統計推斷與應用分析  理論框架搭建完畢後,本書轉嚮如何利用觀測數據對隨機過程進行估計和檢驗。  第8章:隨機過程的估計與檢驗  本章討論瞭基於觀測序列對過程參數進行估計的方法。我們討論瞭最大似然估計(MLE)在參數估計中的應用,特彆是在隱馬爾可夫模型(HMM)和高斯過程中的實現。此外,我們還將介紹如何構造檢驗統計量來判斷過程是否保持平穩性或是否發生瞭結構性變化(Change Point Detection)。  第9章:時間序列分析中的平穩性與非平穩性模型  聚焦於經濟學和信號處理領域,本章係統介紹瞭時間序列模型的建立。我們深入分析瞭自迴歸(AR)、移動平均(MA)及其組閤模型 ARMA。對於非平穩序列,我們探討瞭差分運算以實現平穩化,並介紹瞭GARCH族模型(如ARCH, GARCH)在波動性建模中的關鍵作用,這對於風險管理至關重要。  第10章:高維隨機係統中的降維與近似方法  在麵對復雜係統的多變量數據時,本章提供瞭強大的分析工具。我們討論瞭主成分分析(PCA)在隨機數據維度壓縮中的應用。此外,我們還將引入卡爾曼濾波(Kalman Filtering),這是一種最優綫性遞歸估計器,用於實時估計狀態空間模型的隱藏狀態,廣泛應用於導航、控製和信號去噪。  總結  《隨機過程與應用分析》力求在嚴謹的數學推導與廣泛的實際應用之間找到最佳平衡點。本書不僅是概率論學習者的進階指南,也是需要處理復雜動態係統和不確定性數據的工程師、金融分析師和數據科學傢的必備參考工具。通過本書的學習,讀者將能夠熟練地建立隨機模型,並利用先進的統計和計算方法對這些模型進行分析和求解。