内容简介
《4G:LTE/LTE-Advanced 宽带移动通信技术(影印版)》基于获得巨大成功的书籍《3G演进-HSPA与LTE》,新版集中关注LTE和LTE-Advanced(Rl0),对LTE的关键技术和LTE标准做了全面的介绍,并对各种LTE技术详细解释其方法和采纳理由。本书清晰地阐明了各种LTE关键技术,并深入地解释了各种特定的LTE解决方案,因此,有助于读者理解在移动宽带产品和系统中如何实现和部署LTE。
包含了新增加到LTE无线接入标准和技术(包括3GPPR10)中的全部细节;
清晰地解释了支撑LTE的关键技术(包括OFDM和MIMO)的作用;
完整地涵盖了提交到国际电联无线通信组的LTE-Advanced关键技术(包括LTE载波聚合、扩展多天线传输、中继、异构网);
详细地阐释了LTE无线接口结构、物理层、接入过程、广播、射频特性和系统性能。
Erik Dahlman、Stefan Parkvall和Johan Skold都是爱立信研究院资深研究员,自3G研究的初始阶段就一直深入开展3G与4G技术的研发和标准化工作。他们是3G/4G领域的一流专家,目前仍积极为3GPPLTE的标准化工作做着突出的贡献。
内页插图
目录
Preface
Acknowledgements
Abbreviations and Acronyms
CHAPTER 1 Background of LTE
1.1 Introduction
1.2 Evolution of Mobile Systems Before LTE
1.2.1 The First 3G Standardization
1.3 ITU Activities
1.3.1 IMT-2000 and IMT-Advanced
1.3.2 Spectrum for IMT Systems
1.4 Drivers for LTE
1.5 Standardization of LTE
1.5.1 The Standardization Process
1.5.2 The 3GPP Process
1.5.3 The 3G Evolution to 4G
CHAPTER 2 High Data Rates in Mobile Communication
2.1 High Data Rates: Fundamental Constraints
2.1.1 High Data Rates in Noise-Limited Scenarios
2.1.2 Higher Data Rates in Interference-Limited Scenarios
2.2 Higher Data Rates Within a Limited Bandwidth: Higher-Order Modulation
2.2.1 Higher-Order Modulation in Combination with Channel Coding
2.2.2 Variations in Instantaneous Transmit Power
2.3 Wider Bandwidth Including Multi-Carrier Transmission
2.3.1 Multi-Carrier Transmission
CHAPTER 3 0FDM Transmission
3.1 Basic Principles of OFDM
3.2 OFDM Demodulation
3.3 OFDM Implementation Using IFFT/FFT Processing
3.4 Cyclic-prefix Insertion
3.5 Frequency-Domain Model of OFDM Transmission
3.6 Channel Estimation and Reference Symbols
3.7 Frequency Diversity with OFDM: Importance of Channel Coding
3.8 Selection of Basic OFDM Parameters
3.8.10FDM Subcarrier Spacing
3.8.2 Number of Subcarriers
3.8.3 Cyclic-Prefix Length
3.9 Variations in Instantaneous Transmission Power
3.10 OFDM as a User-Multiplexing and Multiple-Access Scheme
3.1 1 Multi-Cell Broadcast/Multicast Transmission and OFDM
CHAPTER 4 Wider-Band "Single-Carrier" Transmission
4.1 Equalization Against Radio-Channel Frequency Selectivity
4.1.1 Time-Domain Linear Equalization
4.1.2 Frequency-Domain Equalization
4.1.3 Other Equalizer Strategies
4.2 Uplink FDMA with Flexible Bandwidth Assignment
4.3 DFT-Spread OFDM
4.3.1 Basic Principles
4.3.2 DFTS-OFDM Receiver
4.3.3 User Multiplexing with DFTS-OFDM
4.3.4 Distributed DFFS-OFDM
CHAPTER 5 Multi-Antenna Techniques
5.1 Multi-Antenna Configurations
5.2 Benefits of Multi-Antenna Techniques
5.3 Multiple Receive Antennas
5.4 Multiple Transmit Antennas
5.4.1 Transmit-Antenna Diversity
5.4.2 Transmitter-Side Beam-Forming
5.5 Spatial Multiplexing
5.5.1 Basic Principles
5.5.2 Precoder-Based Spatial Multiplexing
5.5.3 Nonlinear Receiver Processing
CHAPTER 6 Scheduling, Link Adaptation, and Hybrid ARQ
6.1 Link Adaptation: Power and Rate Control
6.2 Channel-Dependent Scheduling
6.2.1 Downlink Scheduling
6.2.2 Uplink Scheduling
6.2.3 Link Adaptation and Channel-Dependent Scheduling in the Frequency Domain
6.2.4 Acquiring on Channel-State Information
6.2.5 Traffic Behavior and Scheduling
……
CHAPTER 7 LTE Radio Access: An Overview
CHAPTER 8 Radio-Interface Architecture.
CHAPTER 9 Physical Transmission Resources
CHAPTER 10 Downlink Physical-Layer Processing.
CHAPTER 11 Uplink Physical-Layer Processing.
CHAPTER 12 Retransmission Protocols.
CHAPTER 13 Power Control, Scheduling, and Interference Handling
CHAPTER 14 Access Procedures.
CHAPTER 15 MultimediaBroadcastJMulticast Services
CHAPTER 16 Relaying
CHAPTER 17 Spectrum and RF Characteristics
CHAPTER 18 Performance
CHAPTER 19 Other Wireless Communications Systems
CHAPTER 20 Final Thoughts
References
Index
精彩书摘
The work on LTE was initiated in late 2004 with the overall aim of providing a new radio-accesstechnology focusing on packet-switched data only. The first phase of the 3GPP work on LTE was todefine a set of performance and capability targets for LTE [10]. This included targets on peak datarates, user/system throughput, spectral efficiency, and control/user-plane latency. In addition, require-ments were also set on spectrum fiexibility, as well as on interaction/compatibility with other 3GPPradio-access technologies (GSM, WCDMAfHSPA, and TD-SCDMA).
Once the targets were set, 3GPP studies on the feasibility of different technical solutions consid-ered for LTE were followed by development of the detailed specifications. The first release of theLTE specifications, release 8, was completed in the spring of 2008 and commercial network operationbegan in late 2009. Release 8 has then been followed by additional LTE releases, introducing addi-tional functionality and capabilities in different areas, as illustrated in Figure.
7.1.In parallel to the development of LTE, there has also been an evolution of the overall 3GPPnetwork architecture, termed System Architecture Evolution (SAE), including both the radio-accessnetwork and the core network. Requirements were also set on the architecture evolution, leading toa new flat radio-access-network architecture with a single type of node, the eNodeBl, as well as a newcore-network architecture. An excellent descnption of the LTE-associated core-network architecture,the Evolved Packet Core (EPC), can be found in [9].
The remaining part of this chapter provides an overview of LTE up to and including release 10.The most important technologies used by LTE release 8 - including transmission schemes, schedul-ing, multi-antenna support, and spectrum flexibility - are covered, as well as the additional featuresintroduced in LTE releases 9 and 10. The chapter can either be read on its own to get a high-leveloverview of LTE, or as an introduction to the subsequent chapters.
The following chapters, Chapters 8-18, then contain a detailed description of the LTE radio-accesstechnology. Chapter 8 provides an overview of the LTE protocol structure, including RLC, MAC, andthe physical layer, explaining the logical and physical channels, and the related data flow. The time-frequency structure on which LTE is based is covered in Chapter 9, followed by a detailed descriptionof the physical layer for downlink and uplink transmission in Chapters 10 and 11 respectively. Chapter12 contains a description of the retransmission mechanisms used in LTE, followed by a discussion onpower control, scheduling, and interference management in Chapter 13. Access procedures, necessaryfor a terminal to connect to the network, are the topic of Chapter 14. Chapter 15 covers the multi-cast/broadcast functionality of LTE and Chapter 16 describes relaying operation. Chapter 17 addresseshow radio-frequency (RF) requirements are defined in LTE, taking into account the spectrum flexibility.Finally, Chapter 18 contains an assessment of the system performance of LTE.
……
前言/序言
《4G:LTE/LTE-Advanced 宽带移动通信技术(影印版)》 核心内容概述: 本书深入剖析了第四代(4G)移动通信技术的基石——LTE(Long-Term Evolution)及其演进版本LTE-Advanced。它系统地介绍了4G网络的各个方面,从底层物理层到高层协议栈,从核心网架构到终端设备设计,全面展现了这项革命性技术的精髓。本书不仅关注技术的理论基础,更强调其实际应用和发展趋势,旨在为读者提供一个完整、深入且前沿的4G知识体系。 技术原理与架构: 在物理层,本书详细阐述了LTE所采用的关键技术,包括: OFDMA(Orthogonal Frequency Division Multiple Access)和SC-FDMA(Single Carrier Frequency Division Multiple Access): 这两种多址技术是LTE实现高速率和高频谱效率的核心。OFDMA在下行链路中能够有效应对多径干扰,而SC-FDMA则在保证良好下行链路性能的同时,降低了上行链路的峰均值比(PAPR),节省了终端功耗。本书将深入讲解这两种技术的原理、帧结构、子载波分配、信道编码(如Turbo码和卷积码)以及解调等关键环节。 MIMO(Multiple-Input Multiple-Output)技术: MIMO技术通过在发送端和接收端使用多个天线,极大地提升了频谱效率和链路可靠性。本书将详细介绍不同类型的MIMO(如空间复用、空间分集、波束成形)在LTE中的应用,以及相关的预编码、信道估计和解码算法。 信道编码与调制: LTE采用了先进的信道编码方案,如Turbo码用于数据信道,卷积码(CTC)用于控制信道,以及QPSK、16QAM、64QAM甚至256QAM等高阶调制技术。本书将分析这些编码和调制方案如何平衡数据传输的可靠性和速率,以及自适应调制与编码(AMC)在动态调整传输参数以适应信道变化方面的作用。 资源调度: LTE的调度算法是实现高效资源利用和满足多样化业务需求的关键。本书将深入探讨下行链路和上行链路的调度策略,包括最大比例公平(PF)、比例公平(PF)以及支持服务质量(QoS)的调度方法,并分析其对系统吞吐量、时延和用户体验的影响。 在核心网层面,本书着重介绍了LTE的核心网架构——EPC(Evolved Packet Core)。EPC与传统的2G/3G核心网有着显著的差异,其扁平化的架构和基于IP的通信方式带来了更高的效率和更低的延迟。本书将详细讲解EPC的关键网元及其功能: MME(Mobility Management Entity): 负责用户注册、移动性管理、信令加密和鉴权等功能。 S-GW(Serving Gateway): 作为用户面数据传输的锚点,负责在UE和外部网络之间转发数据包。 P-GW(PDN Gateway): 负责IP地址分配、策略执行和用户数据会话管理。 HSS(Home Subscriber Server): 存储用户身份信息、鉴权信息和订阅数据。 eNodeB(evolved NodeB): LTE网络中的基站,负责无线资源的调度、传输和接收。 本书还将探讨EPC的接口协议,如S1(eNodeB与MME/S-GW之间)、S6a(MME与HSS之间)、S11(MME与S-GW之间)和S5/S8(S-GW与P-GW之间)等,以及这些接口如何实现用户数据的无缝传输和移动性管理。 LTE-Advanced 的演进: 本书不仅限于LTE,还深入介绍了LTE-Advanced,这是LTE的进一步演进,旨在提供更高的峰值速率、更低的延迟和更高的频谱效率。LTE-Advanced引入了多项关键增强技术: 载波聚合(Carrier Aggregation, CA): CA允许多个载波(连续或不连续)在时间和频率上聚合,从而大幅提高用户的数据传输速率。本书将详细介绍CA的原理、不同聚合模式(intra-band contiguous/non-contiguous, inter-band)以及其对吞吐量和终端设计的影响。 MIMO 的增强: LTE-Advanced对MIMO技术进行了进一步的增强,引入了更高阶的MIMO技术,如2x2 MIMO、4x4 MIMO,以及多用户MIMO(MU-MIMO)和协作多点传输(CoMP)等技术,以进一步提升频谱效率和覆盖性能。 更优化的调度与协议: LTE-Advanced在调度算法和协议层面进行了优化,以支持更低的延迟和更高的数据速率,例如支持更短的传输时间间隔(TTI)和更精细的资源调度。 C-RAN(Cloud Radio Access Network)和异构网络(HetNets): 本书还将探讨LTE-Advanced如何与C-RAN等新兴网络架构结合,以及如何构建和优化异构网络,以提高网络容量和覆盖范围。 终端设备与网络部署: 本书的另一重要组成部分是探讨4G终端设备的设计与实现。从射频前端设计、基带处理到功耗管理,都将涉及到LTE/LTE-Advanced终端设备的复杂性。读者将了解到终端设备如何支持多模多频、高阶调制与编码、以及复杂的MIMO配置。 同时,本书也将触及4G网络的部署和规划方面的议题。虽然不深入到具体的基站选址和覆盖仿真,但会涉及LTE网络部署的总体策略,如宏基站、微基站、皮基站的协同部署,以及室内覆盖解决方案等,以期为读者提供一个更全面的4G网络图景。 应用与未来展望: 本书的最后部分将着眼于4G技术所带来的应用和服务,以及对移动通信产业的深远影响。从高清视频流、移动游戏、物联网(IoT)到新兴的增强现实(AR)和虚拟现实(VR)应用,4G为这些服务的实现提供了坚实的基础。 此外,本书还将对4G技术的未来发展趋势进行展望,例如与5G技术的融合、向更高层协议演进的可能性,以及4G技术在特定场景(如企业专网、车联网)中的持续作用。 目标读者: 本书适合于通信工程、电子工程、计算机科学等相关专业的学生,以及在电信运营商、设备制造商、研发机构等从事移动通信技术研究、开发、设计、测试和维护的工程师和技术人员。对于希望深入了解4G移动通信技术原理、架构和发展趋势的专业人士,本书将是一个不可或缺的参考。 总结: 《4G:LTE/LTE-Advanced 宽带移动通信技术(影印版)》是一本系统、深入且前沿的技术著作,它全面覆盖了4G移动通信的各个技术层面,从基础原理到核心技术,从网络架构到终端设计,再到LTE-Advanced的演进和应用。本书旨在为读者构建一个扎实、全面的4G技术知识体系,使其能够深刻理解这项改变了我们通信方式的技术,并为未来的移动通信技术发展奠定坚实的基础。