内容简介
Graph theory is a young but rapidly maturing subject. Even during the quarter of a century that I lectured on it in Cambridge, it changed considerably, and I have found that there is a clear need for a text which introduces the reader not only to the well-established results, but to many of the newer developments as well. It is hoped that this volume will go some way towards satisfying that need.
目录
Apologia
Preface
I Fundamentals
I.1 Definitions
I.2 Paths, Cycles, and Trees
I.3 Hamilton Cycles and Euler Circuits
I.4 Planar Graphs
I.5 An Application of Euler Trails to Algebra
I.6 Exercises
II Electrical Networks
II.1 Graphs and Electrical Networks
II.2 Squaring the Square
II.3 Vector Spaces and Matrices Associated with Graphs
II.4 Exercises
II.5 Notes
III Flows, Connectivity and Matching
III.1 Flows in Directed Graphs
III.2 Connectivity and Menger‘s Theorem
III.3 Matching
III.4 Tutte‘s 1-Factor Theorem
……
Ⅳ Extremal Problems
Ⅴ Colouring
Ⅵ Ramsey Theory
Ⅶ Random Graphs
Ⅷ Graphs Groups and Matrices
Ⅸ Random Walks on Graphs
Ⅹ The Tutte Polynomial
Symbol Inedx
Name Index
Subject Index
前言/序言
现代图论 下载 mobi epub pdf txt 电子书 格式
评分
☆☆☆☆☆
自己现在还没有到说自己数学到什么程度,但是自己对于古典分析很有信心了,对于自己学习新的数学也有了期望,
评分
☆☆☆☆☆
当时因为需要才买的,发现确实适合外行,起点很低
评分
☆☆☆☆☆
呵呵
评分
☆☆☆☆☆
自己现在还没有到说自己数学到什么程度,但是自己对于古典分析很有信心了,对于自己学习新的数学也有了期望,
评分
☆☆☆☆☆
1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论--不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。
评分
☆☆☆☆☆
好书好快。。是正版。。下次再来。。一直支持。。
评分
☆☆☆☆☆
评分
☆☆☆☆☆
20世纪80-90年代曾邦哲的综合系统论(结构论)观将“四色猜想”命题转换等价为“互邻面最大的多面体是四面体”。每个地图可以导出一个图,其中国家都是点,当相应的两个国家相邻时这两个点用一条线来连接。所以四色猜想是图论中的一个问题。它对图的着色理论、平面图理论、代数拓扑图论等分支的发展起到推动作用。
评分
☆☆☆☆☆
书是好书,写的很不错,内容丰富,从基础到前沿都有,非常适合数学系高年级本科生和研究生