有限群的綫性錶示 [Linear Representations of Finite Groups]

有限群的綫性錶示 [Linear Representations of Finite Groups] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
[法] 賽爾 著

下載链接在页面底部


點擊這裡下載
    

想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-30


圖書介紹


齣版社: 世界圖書齣版公司
ISBN:9787506292597
版次:1
商品編碼:10096494
包裝:平裝
外文名稱:Linear Representations of Finite Groups
開本:24開
齣版時間:2008-10-01
用紙:膠版紙
頁數:170
正文語種:英語


類似圖書 點擊查看全場最低價

相關圖書





圖書描述

內容簡介

  《有限群的綫性錶示》是一部非常經典的介紹有限群綫性錶示的教程,原版曾多次修訂重印,作者是當今法國最突齣的數學傢之一,他對理論數學有全麵的瞭解,尤以著述清晰、明瞭聞名。《有限群的綫性錶示》是他寫的為數不多的教科書之一,原文是法文(1971年版),後齣瞭德譯本和英譯本。《有限群的綫性錶示》是英譯本的重印本。它篇幅不大,但深入淺齣的介紹瞭有限群的綫性錶示,並給齣瞭在量子化學等方麵的應用,便於廣大數學、物理、化學工作者初學時閱讀和參考。

內頁插圖

目錄

Part Ⅰ
Representations and Characters
1 Generalities on linear representations
1.1 Definitions
1.2 Basic examples
1.3 Submpmsentations
1.4 Irreducible representations
1.5 Tensor product of two representations
1.6 Symmetric square and alternating square

2 Character theory
2.1 The character of a representation
2.2 Schurs lemma; basic applications
2.3 0rthogonality relations for characters
2.4 Decomposition of the regular representation
2.5 Number of irreducible representations
2.6 Canonical decomposition of a representation
2.7 Explicit decomposition of a representation

3 Subgroups, products, induced representations
3.1 Abelian subgroups
3.2 Product of two groups
3.3 Induced representations

4 Compact groups
4.1 Compact groups
4.2 lnvariant measure on a compact group
4.3 Linear representations of compact groups

5 Examples
5.1 The cyclic Group
5.2 The group
5.3 The dihedral group
5.4 The group
5.5 The group
5.6 The group
5.7 The alternating group
5.8 The symmetric group
5.9 The group of the cube
Bibliography: Part Ⅰ

Part Ⅱ
Representations in Characteristic Zero
6 The group algebra
6.1 Representations and modules
6.2 Decomposition of C[G]
6.3 The center of C[G]
6.4 Basic properties of integers
6.5 lntegrality properties of characters. Applications

7 Induced representations; Mackeys criterion
7.1 Induction
7.2 The character of an induced representation;
the reciprocity formula
7.3 Restriction to subgroups
7.4 Mackeys irreducibility criterion

8 Examples of induced representations
8. l Normal subgroups; applications to the degrees of the
ineducible representations
8.2 Semidirect products by an ahelian group
8.3 A review of some classes of finite groups
8.4 Syiows theorem
8.5 Linear representations of superselvable groups

9 Artins theorem
9.1 The ring R(G)
9.2 Statement of Artins theorem
9.3 First proof
9.4 Second proof of (i) = (ii)

10 A theorem of Brauer
10.1 p-regular elements;p-elementary subgroups
10.2 Induced characters arising from p-elementary
subgroups
10.3 Construction of characters
10.4 Proof of theorems 18 and 18
10.5 Brauers theorem

11 Applications of Brauers theorem
11.1 Characterization of characters
11.2 A theorem of Frobenius
11.3 A converse to Brauers theorem
11.4 The spectrum of A R(G)

12 Rationality questions
12.1 The rings RK(G) and RK(G)
12.2 Schur indices
12.3 Realizability over cyclotomic fields
12.4 The rank of RK(G)
12.5 Generalization of Artins theorem
12.6 Generalization of Brauers theorem
12.7 Proof of theorem 28

13 Rationality questions: examples
13. I The field Q
13.2 The field R
Bibliography: Part Ⅱ

Part Ⅲ
Introduction to Brauer Theory
14 The groups RK(G), R(G), and Pk(G)
14.1 The rings RK(G) and R,(G)
14.2 The groups Pk(G) and P^(G)
14.3 Structure of Pk(G)
14.4 Structure of PA(G)
14.5 Dualities
14.6 Scalar extensions

15 The cde triangle
15.1 Definition of c: Pk(G) ——Rk(G)
15.2 Definition of d: Rs(G) —— Rk(G)
15.3 Definition of e: Pk(G) —— RK(G)
15.4 Basic properties of the cde triangle
15.5 Example: p-gmups
15.6 Example: p-groups
15.7 Example: products ofp-groups and p-groups

16 Theorems
16.1 Properties of the cde triangle
16.2 Characterization of the image of e
16.3 Characterization of projective A [G ]-modules
by their characters
16.4 Examples of projective A [G ]-modules: irreducible
representations of defect zero

17 Proofs
17. I Change of groups
17.2 Brauers theorem in the modular case
17.3 Proof of theorem 33
17.4 Proof of theorem 35
17.5 Proof of theorem 37
17.6 Proof of theorem 38

18 Modular characters
18.1 The modular character of a representation
18.2 Independence of modular characters
18.3 Reformulations
18.4 A section ford
18.5 Example: Modular characters of the symmetric group
18.6 Example: Modular characters of the alternating group

19 Application to Artin representations
19.1 Artin and Swan representations
19.2 Rationality of the Artin and Swan representations
19.3 An invariant

Appendix
Bibliography: Part Ⅲ
Index of notation
Index of terminology

前言/序言

  This book consists of three parts, rather different in level and purpose:
  The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. This is a fundamental result, of constant use in mathematics as well as in quantum chemistry or physics. I have tried to give proofs as elementary as possible, using only the definition of a group and the rudiments of linear algebra.The examples (Chapter 5) have been chosen from those useful to chemists.

有限群的綫性錶示 [Linear Representations of Finite Groups] 下載 mobi epub pdf txt 電子書 格式

有限群的綫性錶示 [Linear Representations of Finite Groups] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

有限群的綫性錶示 [Linear Representations of Finite Groups] 下載 mobi pdf epub txt 電子書 格式 2024

有限群的綫性錶示 [Linear Representations of Finite Groups] 下載 mobi epub pdf 電子書
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

法國的思想傢羅蘭·巴特說過這樣一件有趣的事:高中男生、脫衣舞觀眾、推理小說迷和哲學傢,他們都有著相同的人生。

評分

gtm42好看又好用,還是gtm52的親戚(●?∀?●)

評分

對於一個幾何和它的群,群的一個元素有時叫做該幾何的一個運動。例如,可以通過基於雙麯運動的一個發展來學習雙麯幾何的龐加萊半平麵模型。

評分

在舉一例,不同麯率半徑的橢圓幾何有同構的自同構群。這其實不能算作一個評價,因為所有這種幾何同構。一般的黎曼幾何在這個綱領所能包括的邊界之外。

評分

經常,兩個或者更多的不同的幾何有同構的自同構群。這就産生瞭從愛爾蘭根綱領的抽象群解讀齣具體的幾何的問題。

評分

非常滿意,五星

評分

書很好,也很便宜,做活動時買的,大師之作

評分

書很不錯,價格閤理,送貨很快啊。

評分

書很薄 但是內容很好哦

類似圖書 點擊查看全場最低價

有限群的綫性錶示 [Linear Representations of Finite Groups] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.cndgn.com All Rights Reserved. 新城書站 版权所有