内容简介
Graph theory is a young but rapidly maturing subject. Even during the quarter of a century that I lectured on it in Cambridge, it changed considerably, and I have found that there is a clear need for a text which introduces the reader not only to the well-established results, but to many of the newer developments as well. It is hoped that this volume will go some way towards satisfying that need.
目录
Apologia
Preface
I Fundamentals
I.1 Definitions
I.2 Paths, Cycles, and Trees
I.3 Hamilton Cycles and Euler Circuits
I.4 Planar Graphs
I.5 An Application of Euler Trails to Algebra
I.6 Exercises
II Electrical Networks
II.1 Graphs and Electrical Networks
II.2 Squaring the Square
II.3 Vector Spaces and Matrices Associated with Graphs
II.4 Exercises
II.5 Notes
III Flows, Connectivity and Matching
III.1 Flows in Directed Graphs
III.2 Connectivity and Menger‘s Theorem
III.3 Matching
III.4 Tutte‘s 1-Factor Theorem
……
Ⅳ Extremal Problems
Ⅴ Colouring
Ⅵ Ramsey Theory
Ⅶ Random Graphs
Ⅷ Graphs Groups and Matrices
Ⅸ Random Walks on Graphs
Ⅹ The Tutte Polynomial
Symbol Inedx
Name Index
Subject Index
前言/序言
现代图论 下载 mobi epub pdf txt 电子书 格式
评分
☆☆☆☆☆
图论起源于著名的哥尼斯堡七桥问题。在哥尼斯堡的普莱格尔河上有七座桥将河中的岛及岛与河岸联结起来
评分
☆☆☆☆☆
对于学的比自己不好的人,我会说加油!我会说我尽我所知的告诉你,因为学习是一件事:
评分
☆☆☆☆☆
utm的书都是很好的,需要花时间好好读
评分
☆☆☆☆☆
可以。。。。。。。。。。。。。。。
评分
☆☆☆☆☆
非常喜欢的衣服,继续购买
评分
☆☆☆☆☆
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。
评分
☆☆☆☆☆
呵呵呵呵呵呵呵呵呵呵
评分
☆☆☆☆☆
书挺好, 不过没有寄发票, 能否补寄发票?
评分
☆☆☆☆☆
我为什么写这篇文章,为了激励那些数学不好的人,没有学明白的人,只要你想做,找到合适的顺序,忘记过去学过的数学,重新开始,你一定会能学明白数学的!