基础数论(英文版) [Basic Number Theory]

基础数论(英文版) [Basic Number Theory] 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
[法] 威尔 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-22

图书介绍


出版社: 世界图书出版公司
ISBN:9787510004551
版次:1
商品编码:10184575
包装:平装
外文名称:Basic Number Theory
开本:24开
出版时间:2010-01-01
用纸:胶版纸
页数:313
正文语种:英语


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

  The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set of notes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by Chevalley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very well. It contained a brief but essentially com- plete account of the main features of classfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I included such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather closely at some critical points.

内页插图

目录

Chronological table
Prerequisites and notations
Table of notations

PART Ⅰ ELEMENTARY THEORY
Chapter Ⅰ Locally compact fields
1 Finite fields
2 The module in a locally compact field
3 Classification of locally compact fields
4 Structure 0f p-fields

Chapter Ⅱ Lattices and duality over local fields
1 Norms
2 Lattices
3 Multiplicative structure of local fields
4 Lattices over R
5 Duality over local fields

Chapter Ⅲ Places of A-fields
1 A-fields and their completions
2 Tensor-products of commutative fields
3 Traces and norms
4 Tensor-products of A-fields and local fields

Chapter Ⅳ Adeles
1 Adeles of A-fields
2 The main theorems
3 Ideles
4 Ideles of A-fields

Chapter Ⅴ Algebraic number-fields
1, Orders in algebras over Q
2 Lattices over algebraic number-fields
3 Ideals
4 Fundamental sets

Chapter Ⅵ The theorem of Riemann-Roch
Chapter Ⅶ Zeta-functions of A-fields
1 Convergence of Euler products
2 Fourier transforms and standard functions
3 Quasicharacters
4 Quasicharacters of A-fields
5 The functional equation
6 The Dedekind zeta-function
7 L-functions
8 The coefficients of the L-series

Chapter Ⅷ Traces and norms
1 Traces and norms in local fields
2 Calculation of the different
3 Ramification theory
4 Traces and norms in A-fields
5 Splitting places in separable extensions
6 An application to inseparable extensions

PART Ⅱ CLASSFIELD THEORY
Chapter IX Simple algebras
1 Structure of simple algebras
2 The representations of a simple algebra
3 Factor-sets and the Brauer group
4 Cyclic factor-sets
5 Special cyclic factor-sets

Chapter Ⅹ Simple algebras over local fields
1 Orders and lattices
2 Traces and norms
3 Computation of some integrals

Chapter Ⅺ Simple algebras over A-fields
1. Ramification
2. The zeta-function of a simple algebra
3. Norms in simple algebras
4. Simple algebras over algebraic number-fields . .

Chapter Ⅻ. Local classfield theory
1. The formalism of classfield theory
2. The Brauer group of a local field
3. The canonical morphism
4. Ramification of abelian extensions
5. The transfer

Chapter XIII. Global classfield theory
I. The canonical pairing
2. An elementary lemma
3. Hasses "law of reciprocity" .
4. Classfield theory for Q
5. The Hiibert symbol
6. The Brauer group of an A-field
7. The Hilbert p-symbol
8. The kernel of the canonical morphism
9. The main theorems
10. Local behavior of abelian extensions
11. "Classical" classfield theory
12. "Coronidis loco".
Notes to the text
Appendix Ⅰ. The transfer theorem
Appendix Ⅱ. W-groups for local fields
Appendix Ⅲ. Shafarevitchs theorem
Appendix Ⅳ. The Herbrand distribution
Index of definitions

前言/序言

  The first part of this volume is based on a course taught at PrincetonUniversity in 1961-62; at that time, an excellent set of notes was preparedby David Cantor, and it was originally my intention to make these notesavailable to the mathematical public with only quite minor changes.Then, among some old papers of mine, I accidentally came across along=forgotten manuscript by Chevalley, of pre-war vintage (forgotten,that is to say, both by me and by its author) which, to my taste at least,seemed to have aged very well. It contained a brief but essentially com-plete account of the main features of classfield theory, both local andglobal; and it soon became obvious that the usefulness of the intendedvolume would be greatly enhanced if I included such a treatment of thistopic. It had to be expanded, in accordance with my own plans, but itsoutline could be preserved without much change. In fact, I have adheredto it rather closely at some critical points.
  To improve upon Hecke, in a treatment along classical lines of thetheory of algebrai~ numbers, would be a futile and impossible task. Aswill become apparent from the first pages of this book, I have rathertried to draw the conclusions from the developments of the last thirtyyears, whereby locally compact groups, measure and integration havebeen seen to play an increasingly important role in classical number-theory. In the days of Dirichlet and Hermite, and even of Minkowski,the appeal to "continuous variables" in arithmetical questions may wellhave seemed to come out of some magicians bag of tricks. In retrospect,we see now that the real numbers appear there as one of the infinitelymany completions of the prime field, one which is neither more nor lessinteresting to the arithmetician than its p=adic companions, and thatthere is at least one language and one technique, that of the adeles, for bringing them all together under one roof and making them cooperate for a common purpose. It is needless here to go into the history of thesedevelopments; suffice it to mention such names as Hensel, Hasse, Chevalley, Artin; every one of these, and more recently Iwasawa, Tate, Tamagawa, helped to make some significant step forward along this road. Once the presence of the real field, albeit at infinite distance, ceases to be regarded as a necessary ingredient in the arithmeticians brew.

基础数论(英文版) [Basic Number Theory] 下载 mobi epub pdf txt 电子书 格式

基础数论(英文版) [Basic Number Theory] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

基础数论(英文版) [Basic Number Theory] 下载 mobi pdf epub txt 电子书 格式 2024

基础数论(英文版) [Basic Number Theory] 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

问题

评分

问题

评分

评分

简史

评分

解析数论的创立当归功于黎曼。他发现了黎曼zeta函数之解析性质与数论中的素数分布问题存在深刻联系。确切的说, 黎曼ζ函数的非平凡零点的分布情况决定了素数的很多性质。黎曼猜测, 那些零点都落在复平面上实部为1/2的直线上。这就是著名的黎曼假设--被誉为千禧年七大世界数学难题之一。值得注意的是, 欧拉实际上在处理素数无限问题时也用到了解析方法。

评分

代数数论更倾向于从代数结构角度去研究各类整环的性质, 比如在给定整环上是否存在算术基本定理等等。

评分

门类

评分

商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!商品不错!

评分

目录

类似图书 点击查看全场最低价

基础数论(英文版) [Basic Number Theory] mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有