内容简介
Image Processing and Analysis: Variational, PDE, Wavelet, andStochastic Methods is systematic and well organized, The authorsfirst investigate the geometric, functional, and atomic structures ofimages and then rigorously develop and analyze several imageprocessors. The book is comprehensive and integrative, covering thefour most powerful classes of mathematical tools in contemporaryimage analysis and processing while exploring their intrinsicconnections and integration. The material is balanced in theory andcomputation, following a solid theoretical analysis of model buildingand performance with computational implementation and numerical examples.
This book is written for graduate students and researchers inapplied mathematics, computer science, electrical engineering, andother disciplines who are interested in problems in imaging andcomputer vision. It can be used as a reference by scientists withspecific tasks in image processing, as well as by researchers with ageneral interest in finding out about the latest advances.
内页插图
目录
List of Figures
Preface
1 Introduction
1.1 Dawning of the Era of Imaging Sciences
1.1.1 Image Acquisition
1.1.2 Image Processing
1.1.3 Image Interpretation and Visual Intelligence
1.2 Image Processing by Examples
1.2.1 Image Contrast Enhancement
1.2.2 Image Denoisirg
1.2.3 Image Deblurring
1.2.4 Image Inpainting
1.2.5 Image Segmentation
1.3 An Overview of Methodologies in Image Processing
1.3.1 Morphological Approach
1.3.2 Fourier and Spectral Analysis
1.3.3 Wavelet and Space-Scale Analysis
1.3.4 Stochastic Modeling
1.3.5 Variaticnal Methods
1.3.6 Partial Differential Equations(PDEs)
1.3.7 Different Approaches Are Intrinsically Interconnected
1.4 Organization of the Book
1.5 How to Read the Bcok
2 Some Modern Image Analysis Tools
2.1 Geometry of Curves and Surfaces
2.1.I Geometry of Curves
2.1.2 Geometry of Surfaces in Three Dimensions
2.1.3 Hausdorff Measures and Dimensions
2.2 Functions with Bounded Variations
2.2.1 Total Variatien as a Radon Measure
2.2.2 Basic Properties of BV Functions
2.2.3 The Co-Area Formula
2.3 Elements of Thermodynamics and Statistical Mechanics
2.3.1 Essentials of Thermodynamics
2.3.2 Entropy and Potentials
2.3.3 Statistical Mechanics of Ensembles
2.4 Bayesian Statistical Inference
2.4.1 Image Processing or Visual Perception as Inference
2.4.2 Bayesian Inference: Bias Due to Prior Knowledge
2.4.3 Bayesian Method in Image Processing
2.5 Linear and Nonlinear Filtering and Diffusion
2.5.1 Point Spreading and Markov Transition
2.5.2 Linear Filtering and Diffusion
2.5.3 Nonlinear Filtering and Diffusion
2.6 Wavelets and Multiresolution Analysis
2.6.1 Quest for New Image Analysis Tools
2.6.2 Early Edge Theory and Marr’s Wavelets
2.6.3 Windowed Frequency Analysis and Gabor Wavelets
2.6.4 Frequency-Window Coupling: Malvar-Wilson Wavelets
2.6.5 The Framework of Multiresolution Analysis (MRA)
2.6.6 Fast Image Analysis and Synthesis via Filter Banks
3 Image Modeling and Representation
3.1 Modeling and Representation: What, Why, and How
3.2 Deterministic Image Models
3.2.1 Images as Distributions (Generalized Functions)
3.2.2 Lp Images
3.2.3 Sobolev Images Hn(Ω)
3.2.4 BV Images
3.3 Wavelets and Multiscale Representation
3.3.1 Construction of 2-D Wavelets
3.3.2 Wavelet Responses to Typical Image Features
3.3.3 Besov Images and Sparse Wavelet Representation
3.4 Lattice and Random Field Representation
3.4.1 Natural Images of Mother Nature
3.4.2 Images as Ensembles and Distributions
3.4.3 Images as Gibbs’ Ensembles
3.4.4 Images as Markov Random Fields
3.4.5 Visual Filters and Filter Banks
3.4.6 Entropy-Based Learning of Image Patterns
3.5 Level-Set Representation
3.5.1 Classical Level Sets
3.5.2 Cumulative Level Sets
3.5.3 Level-Set Synthesis
3.5.4 An Example: Level Sets of Piecewise Constant Images
3.5.5 High Order Regularity of Level Sets
3.5.6 Statistics of Level Sets of Natural Images
3.6 The Mumford-Shah Free Boundary Image Model
3.6.1 Piecewise Constant 1-D Images: Analysis and Synthesis
3.6.2 Piecewise Smooth 1-D Images: First Order Representation
3.6.3 Piecewise Smooth I-D Images: Poisson Representation
3.6.4 Piecewise Smooth 2-D Images
3.6.5 The Mumford-Shah Model
3.6.6 The Role of Special B V Images
4 Image Denoising
4.1 Noise: Origins. Physics. and Models
4.l. 1 Origins and Physics of Noise
4.1.2 A Brief Overview of 1-D Stochastic Signals
4.1.3 Stochastic Models of Noises
4.1.4 Analog White Noises as Random Generalized Functions
4.1.5 Random Signals from Stochastic Differential Equations
4.1.6 2-D Stochastic Spatial Signals: Random Fields
4.2 Linear Denoising: Lowpass Filtering
4.2.1 Signal vs. Noise
4.2.2 Denoising via Linear Filters and Diffusion
4.3 Data-Driven Optimal Filtering: Wiener Filters
4.4 Wavelet Shrinkage Denoising
4.4.1 Shrinkage: Quasi-statistical Estimation of Singletons
4.4.2 Shrinkage: Variational Estimation of Singletons
4.4.3 Denoising via Shrinking Noisy Wavelet Components
4.4.4 Variational Denoising of Noisy Besov Images
4.5 Variational Denoising Based on BV Image Model
4.5.1 TV. Robust Statistics. and Median
4.5.2 The Role of TV and BV Image Model
4.5.3 Biased Iterated Median Filtering
4.5.4 Rudin. Osher. and Fatemi's TV Denoising Model
4.5.5 Computational Approaches to TV Denoising
4.5.6 Duality for the TV Denoising Model
4.5.7 Solution Structures of the TV Denoising Model
4.6 Denoising via Nonlinear Diffusion and Scale-Space Theory
4.6.1 Perona and Malik's Nonlinear Diffusion Model
4.6.2 Axiomatic Scale-Space Theory
4.7 Denoising Salt-and-Pepper Noise
4.8 Multichannel TV Denoising
4.8.1 Variational TV Denoising of Multichannel Images
4.8.2 Three Versions of TV[u]
5 Image Deblurring
5.1 Blur: Physical Origins and Mathematical Models
5.1.1 Physical Origins
5.1.2 Mathematical Models of Blurs
5.1.3 Linear vs. Nonlinear Blurs
5.2 Ill-posedness and Regularization
5.3 Deblurring with Wiener Filters
5.3.1 Intuition on Filter-Based Deblurring
5.3.2 Wiener Filtering
5.4 Deblurring of BV Images with Known PSF
5.4.1 The Variational Model
5.4.2 Existence and Uniqueness
5.4.3 Computation
5.5 Variational Blind Deblurring with Unknown PSF
5.5.1 Parametric Blind Deblurring
5.5.2 Parametric-Field-Based Blind Deblurring
5.5.3 Nonparametric Blind Deblurring
6 Image Inpainting
6.1 A Brief Review on Classical Interpolation Schemes
6.1.1 Polynomial Interpolation
6.1.2 Trigonometric Polynomial Interpolation
6.1.3 Spline Interpolation
6.1.4 Shannon's Sampling Theorem
6.1.5 Radial Basis Functions and Thin-Plate Splines
6.2 Challenges and Guidelines for 2-D Image Inpainting
6.2.1 Main Challenges for Image Inpainting
6.2.2 General Guidelines for Image Inpainting
6.3 Inpainting of Sobolev Images: Green's Formulae
6.4 Geometric Modeling of Curves and Images
6.4.1 Geometric Curve Models
6.4.2 2-. 3-Point Accumulative Energies. Length. and Curvature.
6.4.3 Image Models via Functionalizing Curve Models
6.4.4 Image Models with Embedded Edge Models
6.5 Inpainting BV Images (via the TV Radon Measure)
6.5.1 Formulation of the TV Inpainting Model
6.5.2 Justification of TV Inpainting by Visual Perception
6.5.3 Computation of TV lnpainting
6.5.4 Digital Zooming Based on TV Inpainting
6.5.5 Edge-Based Image Coding via Inpainting
6.5.6 More Examples and Applications of TV Inpainting
6.6 Error Analysis for Image Inpainting
6.7 Inpainting Piecewise Smooth Images via Mumford and Shah
6.8 Image Inpainting via Euler's Elasticas and Curvatures
6.8.1 Inpainting Based on the Elastica Image Model
6.8.2 Inpainting via Mumford-Shah-Euler Image Model
6.9 Inpainting of Meyer's Texture
6.10 Image Inpainting with Missing Wavelet Coefficients
6.11 PDE Inpainting: Transport. Diffusion. and Navier-Stokes
6.11.1 Second Order Interpolation Models
6.11.2 A Third Order PDE Inpainting Model and Navier-Stokes
……
7 Image Segmentation
Bibliography
Index
前言/序言
《图像处理与分析:变分、PDE、小波及随机方法》 图书简介 本卷,作为“国外数学名著系列(续一 影印版)”中的第38部,隆重推出《图像处理与分析:变分、PDE、小波及随机方法》,为广大数学、计算机科学、工程学以及相关领域的科研人员、研究生和高级工程师提供了一部集理论深度与应用广度于一体的权威著作。本书聚焦于现代图像处理与分析领域中最具影响力和活力的几个核心数学工具和方法,即变分方法、偏微分方程(PDE)、小波理论以及随机方法。通过系统深入地阐述这些数学工具在图像领域的独特作用和强大能力,本书旨在构建一个坚实的理论框架,并引导读者掌握解决复杂图像问题的关键技术。 本书的编写宗旨在于 bridging the gap between abstract mathematical theory and practical image processing challenges. 图像,作为我们感知世界最直观的方式,其背后蕴含着海量的信息。如何从原始图像中提取、理解、增强、恢复、分割,乃至理解其内容,是信息时代的核心课题之一。而近年来,数学领域的进步,尤其是上述几个关键分支的发展,为解决这些挑战提供了前所未有的强大工具。本书正是系统梳理和呈现这些数学工具如何被巧妙地应用于图像处理与分析的最新成果。 核心内容概览: 1. 变分方法 (Variational Methods): 变分方法是优化问题的一个强大框架,它通过最小化一个能量泛函来寻找最优解。在图像处理中,许多问题都可以转化为寻找一个能量最小化的图像。本书将详细介绍变分法的基本原理,包括欧拉-拉格朗日方程、正则化理论等。重点将放在如何为图像处理问题构建合适的能量函数,例如: 图像去噪 (Image Denoising): 传统的图像去噪方法往往会模糊图像细节,而变分方法能够通过正则化项来平衡平滑度和细节保持,例如Total Variation (TV) 模型,它在保持图像边缘的同时有效去除噪声。本书将深入探讨TV模型的数学理论,以及其在不同噪声模型下的变种和改进。 图像恢复 (Image Restoration): 图像模糊、缺失等问题可以通过变分方法进行建模和求解。例如,使用变分模型来反卷积模糊图像,或者修复缺失的图像区域。 图像分割 (Image Segmentation): 将图像划分为不同的区域是图像分析的关键步骤。Chan-Vese 模型等基于变分原理的水平集方法,能够根据图像的灰度、纹理等特征自动分割出目标物体,即使目标边界不连续或存在噪声。本书将深入讲解这些模型背后的数学推导和算法实现。 2. 偏微分方程 (Partial Differential Equations - PDE): 偏微分方程在描述连续介质的演化规律方面扮演着至关重要的角色,而图像本身就可以被视为一种二维的连续信号。因此,PDE在图像处理中展现出了强大的生命力。本书将系统介绍PDE在图像领域的应用,包括: 图像扩散 (Image Diffusion): 类似于热传导方程,图像扩散模型可以用于平滑图像,去除噪声,同时可以选择性地保留边缘。Anisotropic diffusion (各向异性扩散) 模型,例如Perona-Malik模型,能够根据图像局部特征决定扩散的方向和强度,从而实现选择性平滑,在去噪和特征提取方面效果显著。 图像分割与重建: PDE可以用来构建演化方程,驱动图像分割过程。例如,基于曲率流的几何活动轮廓模型(如Mean Curvature Flow),它们通过演化曲线的几何性质来逼近物体的边界。 运动估计与光流: PDE方法也被用于计算图像序列中的运动信息,例如光流的估计。 3. 小波理论 (Wavelet Theory): 小波变换是一种时频局部化变换,相比于傅里叶变换,它能够同时捕捉信号的频率信息和局部位置信息,这对于分析具有奇异点或不连续特征的图像至关重要。本书将深入探讨小波理论在图像处理中的应用: 图像压缩 (Image Compression): 小波变换能够有效地将图像能量集中在少数几个小波系数上,从而实现高效的图像压缩,例如JPEG2000标准就采用了小波变换。 图像去噪: 在小波域中,噪声的系数通常分布在幅度较小的区域,而图像的有用信息则集中在较大的系数上。通过对小波系数进行阈值处理,可以有效地去除噪声,同时保留图像的细节。本书将介绍不同的小波去噪算法,如软阈值和硬阈值方法。 图像融合 (Image Fusion): 将来自不同传感器或不同处理方式的图像融合,以获得更丰富的信息。小波变换能够从不同尺度和方向上分析图像,并进行多分辨率的融合。 多分辨率分析: 小波提供了一种强大的多分辨率分析框架,使得我们可以从不同的尺度上观察和处理图像,这对于分析图像的结构和纹理非常有用。 4. 随机方法 (Stochastic Methods): 自然图像往往包含各种随机噪声,并且图像的生成过程也可能具有随机性。随机方法为建模和处理这类图像提供了有力的工具。本书将介绍: 马尔可夫随机场 (Markov Random Fields - MRF): MRF模型能够描述图像像素之间的空间依赖性,常用于图像去噪、分割和纹理合成。Gibbs 采样等算法可以用于从MRF模型中生成图像或进行推理。 粒子滤波 (Particle Filtering): 在图像跟踪、目标识别等动态场景中,粒子滤波能够有效地处理非线性和非高斯的状态转移和观测模型,用于估计目标的状态。 蒙特卡罗方法 (Monte Carlo Methods): 在复杂的图像建模和分析问题中,蒙特卡罗方法可以用于近似计算积分、优化参数或进行不确定性量化。 随机过程在图像生成和纹理建模中的应用: 探索如何利用随机过程来生成逼真的自然图像纹理,或者模拟图像的形成过程。 本书的特色与价值: 理论与实践的紧密结合: 本书不仅深入阐述了各项数学方法的理论基础,还通过大量的图像处理实例,生动地展示了这些方法在实际问题中的应用。读者不仅能理解“为什么”,更能掌握“怎么做”。 跨学科视角: 图像处理与分析是一个高度交叉的领域,本书融合了数学、计算机科学、信号处理、物理学等多个学科的知识,为读者提供了一个广阔的视野。 前沿性与经典性的平衡: 本书既包含了图像处理领域久经考验的经典数学方法,也涵盖了近年来发展迅速的先进技术,例如基于深度学习的PDE方法与小波的结合等(尽管本書強調的是變分、PDE、小波及隨機方法,但這些基礎方法是理解更高級技術的基石)。 清晰的结构与严谨的论述: 全书逻辑清晰,论证严谨,数学推导详细,能够帮助读者建立扎实的数学功底,并能够独立地进行研究和开发。 丰富的数学工具: 读者将有机会深入接触和掌握诸如泛函分析、测度论、概率论、偏微分方程理论、小波分析等一系列高级数学工具,这将极大地提升其解决复杂数学建模问题的能力。 《图像处理与分析:变分、PDE、小波及随机方法》不仅是一本技术手册,更是一扇通往更深层理解图像世界的大门。它为那些渴望在图像处理与分析领域有所建树的学者和工程师们提供了一份宝贵的知识财富,指引他们如何运用强大的数学工具,去探索和解决那些充满挑战和机遇的图像问题。本书的出版,必将为推动相关领域的研究和应用发展做出重要贡献。