应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications]

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
[德] 泽德勒 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-31

图书介绍


出版社: 世界图书出版公司
ISBN:9787510005459
版次:1
商品编码:10104517
包装:平装
外文名称:Applied Functional AnalysisMa:In Principles and Their Applications
开本:16开
出版时间:2009-10-01
用纸:胶版纸
页数:404
正文语


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

  More precisely, by (i), I mean a systematic presentation of the materialgoverned by the desire for mathematical perfection and completeness ofthe results. In contrast to (i), approach (ii) starts out from the question"What are the most important applications?" and then tries to answer thisquestion as quickly as possible. Here, one walks directly on the main roadand does not wander into all the nice and interesting side roads.
  The present book is based on the second approach. It is addressed toundergraduate and beginning graduate students of mathematics, physics,and engineering who want to learn how functional analysis elegantly solvesma~hematical problems that are related to our real world azld that haveplayed an important role in the history of mathematics. The reader shouldsense that the theory is being developed, not simply for its own sake, butfor the effective solution of concrete problems.

内页插图

目录

Preface
Contents of AMS Volume 108
1 The Hahn-Banach Theorem Optimization Problems
1.1 The Hahn-Banach Theorem
1.2 Applications to the Separation of Convex Sets
1.3 The Dual Space C[a, b]*
1.4 Applications to the Moment Problem
1.5 Minimum Norm Problems and Duality Theory
1.6 Applications to Cebysev Approximation
1.7 Applications to the Optimal Control of Rockets
2 Variational Principles and Weak Convergence
2.1 The nth Variation
2.2 Necessary and Sufficient Conditions for Local Extrema and the Classical Calculus of Variations
2.3 The Lack of Compactness in Infinite-Dimensional Banach Spaces
2.4 Weak Convergence
2.5 The Generalized Weierstrass Existence Theorem
2.6 Applications to the Calculus of Variations
2.7 Applications to Nonlinear Eigenvalue Problems
2.8 Reflexive Banach Spaces
2.9 Applications to Convex Minimum Problems and Variational Inequalities
2.10 Applications to Obstacle Problems in Elasticity
2.11 Saddle Points
2.12 Applications to Dui~lity Theory
2.13 The von Neumann Minimax Theorem on the Existence of Saddle Points
2.14 Applications to Game Theory
2.15 The Ekeland Principle about Quasi-Minimal Points
2.16 Applications to a General Minimum Principle via the Palais-Smale Condition
2.17 Applications to the Mountain Pass Theorem
2.18 The Galerkin Menhod and Nonlinear Monotone Operators
2.19 Symmetries and Conservation Laws (The Noether Theorem
2.20 The Basic Ideas of Gauge Field Theory
2.21 Representations of Lie Algebras
2.22 Applications to Elementary Particles
3 Principles of Linear Functional Analysis
3.1 The Baire Theorem
3.2 Application to the Existence of Nondifferentiable Continuous Functions
3.3 The Uniform Boundedness Theorem
3.4 Applications to Cubature Formulas
3.5 The Open Mapping Theorem
3.6 Product Spaces
3.7 The Closed Graph Theorem
3.8 Applications to Factor Spaces
3.9 Applications to Direct Sums and Projections
3.10 Dual Operators
3.11 The Exactness of the Duality Functor
3.12 Applications to the Closed Range Theorem and to Fredholm Alternatives
4 The Implicit Function Theorem
4.1 m-Linear Bounded Operators
4.2 The Differential of Operators and the Fr~chet Derivative
4.3 Applications to Analytic Operators
4.4 Integration
4.5 Applications to the Taylor Theorem
4.6 Iterated Derivatives
4.7 The Chain Rule
4.8 The Implicit Function Theorem
4.9 Applications to Differential Equations
4.10 Diffeomorphisms and the Local Inverse Mapping Theorem
4.11 Equivalent Maps and the Linearization Principle
4.12 The Local Normal Form for Nonlinear Double Splitting Maps
4.13 The Surjective Implicit Function Theorem
4.14 Applications to the Lagrange Multiplier Rule
5 Fredholm Operators
5.1 Duality for Linear Compact Operators
5.2 The Riesz-Schauder Theory on Hilbert Spaces
5.3 Applications to Integral Equations
5.4 Linear Fredholm Operators
5.5 The Riesz-Schauder Theory on Banach Spaces
5.6 Applications to the Spectrum of Linear Compact Operators
5.7 The Parametrix
5.8 Applications to the Perturbation of Fredholm Operators
5.9 Applications to the Product Index Theorem
5.10 Fredholm Alternatives via Dual Pairs
5.11 Applications to Integral Equations and Boundary-Value Problems
5.12 Bifurcation Theory
5.13 Applications to Nonlinear Integral Equations
5.14 Applications to Nonlinear Boundary-Value Problems
5.15 Nonlinear Fredholm Operators
5.16 Interpolation Inequalities
5.17 Applications to the Navier-Stokes Equations References
List of Symbols
List of Theorems
List of Most Important Definitions
Subject Index

前言/序言

  More precisely, by (i), I mean a systematic presentation of the materialgoverned by the desire for mathematical perfection and completeness ofthe results. In contrast to (i), approach (ii) starts out from the question"What are the most important applications?" and then tries to answer thisquestion as quickly as possible. Here, one walks directly on the main roadand does not wander into all the nice and interesting side roads.
  The present book is based on the second approach. It is addressed toundergraduate and beginning graduate students of mathematics, physics,and engineering who want to learn how functional analysis elegantly solvesma~hematical problems that are related to our real world azld that haveplayed an important role in the history of mathematics. The reader shouldsense that the theory is being developed, not simply for its own sake, butfor the effective solution of concrete problems.

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] 下载 mobi epub pdf txt 电子书 格式

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] 下载 mobi pdf epub txt 电子书 格式 2025

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家维多·沃尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。

评分

在别处买了第一卷,凑全

评分

在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。

评分

泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

评分

拓扑线性空间

评分

经典的书,讲解清晰。

评分

京东买书,既有折扣,取货也方便

评分

一本泛函分析的经典教材,感觉是看过的类似的书中最好的一本了。

评分

在别处买了第一卷,凑全

类似图书 点击查看全场最低价

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] mobi epub pdf txt 电子书 格式下载 2025


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有