正版包邮 普林斯顿微积分读本(修订版) 美国普林斯顿大学的微积分复习课程 微积分书籍

正版包邮 普林斯顿微积分读本(修订版) 美国普林斯顿大学的微积分复习课程 微积分书籍 pdf epub mobi txt 电子书 下载 2025

AdrianBanner 著,杨爽赵晓婷高璞 译
图书标签:
  • 微积分
  • 普林斯顿
  • 数学
  • 教材
  • 复习
  • 高等教育
  • 大学
  • 理工科
  • 包邮
  • 正版
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 万卷出版公司图书专营店
出版社: 人民邮电出版社
ISBN:9787115435590
商品编码:11974938945
出版时间:2016-10-01
页数:668

具体描述






> 内容介绍

 本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点着重训练大家自己解答问题的能力。本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。

目录

1章 函数、图像和直线  1

1.1 函数  1

1.1.1 区间表示法  3

1.1.2 求定义域  3

1.1.3 利用图像求值域  4

1.1.4 垂线检验  5

1.2 反函数  6

1.2.1 水平线检验  7

1.2.2 求反函数  8

1.2.3 限制定义域  8

1.2.4 反函数的反函数  9

1.3 函数的复合  10

1.4 奇函数和偶函数  12

1.5 线性函数的图像  14

1.6 常见函数及其图像  16

2章 三角学回顾  21

2.1 基本知识  21

2.2 扩展三角函数定义域  23

2.2.1 ASTC 方法  25

2.2.2 [0; 2π] 以外的三角函数  27

2.3 三角函数的图像  29

2.4 三角恒等式  32

3章 极限导论  34

3.1 极限:基本思想  34

3.2 左极限与右极限  36

3.3 何时不存在极限  37

3.4 在∞-处的极限  38

3.5 关于渐近线的两个常见误解  41

3.6 三明治定理  43

3.7 极限的基本类型小结  45

4章 求解多项式的极限问题  47

4.1 x a 时的有理函数的极限  47

4.2 x a 时的平方根的极限  50

4.3 x 时的有理函数的极限  51

4.4 x 时的多项式型函数的极限  56

4.5 x -时的有理函数的极限  59

4.6 包含juedui值的函数的极限  61

5章 连续性和可导性  63

5.1 连续性  63

5.1.1 在一点处连续  63

5.1.2 在一个区间上连续  64

5.1.3 连续函数的一些例子  65

5.1.4 介值定理  67

5.1.5 一个更难的介值定理例子  69

5.1.6 连续函数的ZUI大值和ZUI小值  70

5.2 可导性  71

5.2.1 平均速率  72

5.2.2 位移和速度  72

5.2.3 瞬时速度  73

5.2.4 速度的图像阐释  74

5.2.5 切线  75

5.2.6 导函数  77

5.2.7 作为极限比的导数  78

5.2.8 线性函数的导数  80

5.2.9 二阶导数和更高阶导数  80

5.2.10 何时导数不存在  81

5.2.11 可导性和连续性  82

6章 求解微分问题  84

6.1 使用定义求导  84

6.2 用更好的办法求导  87

6.2.1 函数的常数倍  88

6.2.2 函数和与函数差  88

6.2.3 通过乘积法则求积函数的导数  88

6.2.4 通过商法则求商函数的导数  90

6.2.5 通过链式求导法则求复合函数的导数  91

6.2.6 那个难以处理的例子  94

6.2.7 乘积法则和链式求导法则的理由  96

6.3 求切线方程  98

6.4 速度和加速度  99

6.5 导数伪装的极限  101

6.6 分段函数的导数  103

6.7 直接画出导函数的图像  106

7章 三角函数的极限和导数  111

7.1 三角函数的极限  111

7.1.1 小数的情况  111

7.1.2 问题的求解——小数的情况  113

7.1.3 大数的情况  117

7.1.4 “其他的”情况  120

7.1.5 一个重要极限的证明  121

7.2 三角函数的导数  124

7.2.1 求三角函数导数的例子  127

7.2.2 简谐运动  128

7.2.3 一个有趣的函数  129

8章 隐函数求导和相关变化率  132

8.1 隐函数求导  132

8.1.1 技巧和例子  133

8.1.2 隐函数求二阶导  137

8.2 相关变化率  138

8.2.1 一个简单的例子  139

8.2.2 一个稍难的例子  141

8.2.3 一个更难的例子  142

8.2.4 一个非常难的例子  144

9章 指数函数和对数函数  148

9.1 基础知识  148

9.1.1 指数函数的回顾  148

9.1.2 对数函数的回顾  149

9.1.3 对数函数、指数函数及反函数  150

9.1.4 对数法则  151

9.2 e 的定义  153

9.2.1 一个有关复利的问题  153

9.2.2 问题的答案  154

9.2.3 更多关于e 和对数函数的内容  156

9.3 对数函数和指数函数求导  158

9.4 求解指数函数或对数函数的极限  161

9.4.1 涉及e 的定义的极限  161

9.4.2 指数函数在0 附近的行为  162

9.4.3 对数函数在1 附近的行为  164

9.4.4 指数函数在∞-附近的行为  164

9.4.5 对数函数在∞附近的行为  167

9.4.6 对数函数在0 附近的行为  168

9.5 取对数求导法  169

9.6 指数增长和指数衰变  173

9.6.1 指数增长  174

9.6.2 指数衰变  176

9.7 双曲函数  178

10章 反函数和反三角函数  181

10.1 导数和反函数  181

10.1.1 使用导数证明反函数存在  181

10.1.2 导数和反函数:可能出现的问题  182

10.1.3 求反函数的导数  183

10.1.4 一个综合性例子  185

10.2 反三角函数  187

10.2.1 反正弦函数  187

10.2.2 反余弦函数  190

10.2.3 反正切函数  192

10.2.4 反正割函数  194

10.2.5 反余割函数和反余切函数  195

10.2.6 计算反三角函数  196

10.3 反双曲函数  199

11章 导数和图像  202

11.1 函数的极值  202

11.1.1 全局极值和局部极值  202

11.1.2 极值定理  203

11.1.3 求全局ZUI大值和ZUI小值  204

11.2 罗尔定理  206

11.3 中值定理  209

11.4 二阶导数和图像  212

11.5 对导数为零点的分类  215

11.5.1 使用一次导数  215

11.5.2 使用二阶导数  217

12章 绘制函数图像  219

12.1 建立符号表格  219

12.1.1 建立一阶导数的符号表格  221

12.1.2 建立二阶导数的符号表格  222

12.2 绘制函数图像的全面方法  224

12.3 例题  225

12.3.1 一个不使用导数的例子  225

12.3.2 完整的方法:例一  227

12.3.3 完整的方法:例二  229

12.3.4 完整的方法:例三  231

12.3.5 完整的方法:例四  234

13章 ZUI优化和线性化  239

13.1 ZUI优化  239

13.1.1 一个简单的ZUI优化例子  239

13.1.2 ZUI优化问题:一般方法  240

13.1.3 一个ZUI优化的例子  241

13.1.4 另一个ZUI优化的例子  242

13.1.5 在ZUI优化问题中使用隐函数求导  246

13.1.6 一个较难的ZUI优化例子  246

13.2 线性化  249

13.2.1 线性化问题:一般方法  251

13.2.2 微分  252

13.2.3 线性化的总结和例子  254

13.2.4 近似中的误差  256

13.3 牛顿法  258

14章 洛必达法则及极限问题总结  263

14.1 洛必达法则  263

14.1.1 类型A0/0 263

14.1.2 类型A:±∞/ ±∞266

14.1.3 类型B1: (∞-∞) 267

14.1.4 类型B2: (0 ×±∞) 269

14.1.5 类型C:??(1±∞, 0o或∞o)270

14.1.6 洛必达法则类型的总结  272

14.2 关于极限的总结  273

15章 积分  276

15.1 求和符号  276

15.1.1 一个有用的求和  279

15.1.2 伸缩求和法  280

15.2 位移和面积  283

15.2.1 三个简单的例子  283

15.2.2 一段更常规的旅行  285

15.2.3 有向面积  287

15.2.4 连续的速度  288

15.2.5 两个特别的估算  291

16章 定积分  293

16.1 基本思想  293

16.2 定积分的定义  297

16.3 定积分的性质  301

16.4 求面积  305

16.4.1 求通常的面积  306

16.4.2 求解两条曲线之间的面积  308

16.4.3 求曲线与y 轴所围成的面积  310

16.5 估算积分  313

16.6 积分的平均值和中值定理  316

16.7 不可积的函数  319

17章 微积分基本定理  321

17.1 用其他函数的积分来表示的函数  321

17.2 微积分的DIYI基本定理  324

17.3 微积分的第二基本定理  328

17.4 不定积分  329

17.5 怎样解决问题:微积分的DIYI基本定理  331

17.5.1 变形1:变量是积分下限  332

17.5.2 变形2:积分上限是一个函数  332

17.5.3 变形3:积分上下限都为函数  334

17.5.4 变形4:极限伪装成导数  335

17.6 怎样解决问题:微积分的第二基本定理  336

17.6.1 计算不定积分  336

17.6.2 计算定积分  339

17.6.3 面积和juedui值  341

17.7 技术要点  344

17.8 微积分DIYI基本定理的证明  345

18章 积分的方法I347

18.1 换元法  347

18.1.1 换元法和定积分  350

18.1.2 如何换元  353

18.1.3 换元法的理论解释  355

18.2 分部积分法  356

18.3 部分分式  361

18.3.1 部分分式的代数运算  361

18.3.2 对每一部分积分  365

18.3.3 方法和一个完整的例子  367

19章 积分的方法II 373

19.1 应用三角恒等式的积分  373

19.2 关于三角函数的幂的积分  376

19.2.1 sin cos 的幂  376

19.2.2 tan 的幂  378

19.2.3 sec 的幂  379

19.2.4 cot 的幂  381

19.2.5 csc 的幂  382

19.2.6 约化公式  382

19.3 关于三角换元法的积分  384

19.3.1 类型1">384

19.3.2 类型2">386

19.3.3 类型3">387

19.3.4 配方和三角换元法  388

19.3.5 关于三角换元法的总结  389

19.3.6 平方根的方法和三角换元法  389

19.4 积分技巧总结  391

20章 反常积分:基本概念  393

20.1 收敛和发散  393

20.1.1 反常积分的一些例子  395

20.1.2 其他破裂点  397

20.2 关于无穷区间上的积分  398

20.3 比较判别法(理论)400

20.4 极限比较判别法(理论)402

20.4.1 函数互为渐近线  402

20.4.2 关于判别法的陈述  404

20.5 p 判别法(理论) 405

20.6 juedui收敛判别法  407

21章 反常积分:如何解题  410

21.1 如何开始  410

21.1.1 拆分积分  410

21.1.2 如何处理负函数值  411

21.2 积分判别法总结  413

21.3 常见函数在∞和-∞附近的表现  414

21.3.1 多项式和多项式型函数在1 和?1 附近的表现  415

21.3.2 三角函数在∞和-∞附近的表现  417

21.3.3 指数在∞和-∞附近的表现  419

21.3.4 对数在∞附近的表现  422

21.4 常见函数在0 附近的表现  426

21.4.1 多项式和多项式型函数在0 附近的表现  426

21.4.2 三角函数在0 附近的表现  427

21.4.3 指数函数在0 附近的表现  429

21.4.4 对数函数在0 附近的表现  430

21.4.5 更一般的函数在0 附近的表现  431

21.5 如何应对不在0 或∞处的瑕点  432

22章 数列和级数:基本概念  434

22.1 数列的收


用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有