数据化管理:洞悉零售及电子商务运营

数据化管理:洞悉零售及电子商务运营 pdf epub mobi txt 电子书 下载 2025

黄成明 著
图书标签:
  • 数据分析
  • 零售运营
  • 电商运营
  • 数字化转型
  • 精细化管理
  • 商业智能
  • 数据驱动
  • 业绩增长
  • 运营优化
  • 消费者洞察
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 电子工业出版社
ISBN:9787121234064
版次:1
商品编码:11482086
品牌:Broadview
包装:平装
开本:24开
出版时间:2014-07-01
用纸:胶版纸
页数:306
正文语种:中文

具体描述

产品特色


编辑推荐

  

  赫基国际集团CEO徐宇、唯品会高级VP蒋泾、知名自媒体人鬼脚七、中国传媒大学教授沈浩等17位企业老总及行业大腕联袂推荐;
  教你如何用常见的Excel工具建立商业运营模型;
  从数据中发现商业规则、洞察消费者行为、量化商业价值,让你的商业价值算得出。

内容简介

  

  《数据化管理:洞悉零售及电子商务运营》讲述了两个年轻人在大公司销售、商品、电商、数据等部门工作的故事,通过大量案例深入浅出地讲解了数据意识和零售思维。作者将各种数据分析方法融入到具体的业务场景中,最终形成数据化管理模型,从而帮助企业提高运营管理能力。
  《数据化管理:洞悉零售及电子商务运营》全部案例均基于Excel,每个人都能快速上手应用并落地。
  

作者简介

  黄成明(@数据化管理),拥有15年的销售及数据分析经验,历经美国强生公司、妮维雅公司、雅芳公司和鼎盛时期的诺基亚公司。目前是数据化管理的咨询顾问和培训师。他独立研发了基于周销售权重指数的零售管理模型,可以有效地进行目标管理、销售预测、客流预估、促销评估、销售预警等。

内页插图

精彩书评

  

  ★很早就和黄老师认识并合作了,一直很欣赏他对商业的理解度。现在终于看见他将自己的智慧整理成了一本书,有理论也有实践,有零售思维也有数据意识,有营运规划也有策略分析。作为企业经营者,最怕只有数据却没有产生价值,这本书可以帮助零售从业者提高对数据的认识,并且用数据提高营运管理深度。
  ——徐宇,赫基国际集团,CEO
  
  ★这是我读过的接地气的数据化管理著作,聚焦于通过数据分析帮助策略落地。本书提到的零售策略,我在家乐福及华润万家零售实战中都用到过,受益匪浅。其中关于客户驱动及竞争分析的方法论,在目前电商的激烈竞争中,依然适用,甚至不可或缺。
  ——蒋泾,唯品会,高级副总裁
  
  ★这是个竞争不断加剧的时代,我们必须更加专业。数据化管理,就是专业的技能之一。此书作者用比较生动的方式,把枯燥的数据概念解读得通俗易懂,值得一读。
  ——鬼脚七,知名自媒体人,前大淘宝搜索负责人,热销书《做自己》《爱生活》作者
  
  ★数据并不是人们最终需要的东西,他们需要的是信息,是对未来发展的洞察力。数据化管理正以我们从未想象过的方式影响着企业的发展。如何从数据中发现商业规则、洞察消费者行为、量化商业价值都需要企业拥有能融合商业理解、数据分析并具备从海量数据中发现知识能力的数据分析师。相信《数据化管理》一书会让您的商业价值算得出。
  ——沈浩 中国传媒大学新闻学院,教授;统计调查研究所,所长;数据挖掘研发中心,主任
  
  ★零售业出路不仅是线上线下的成功融合,更源于对数据的收集、整理、分析,实现可预测、可指导,就是常说的数据化管理。市面上不少关于大数据的书籍,多来自国外,理论性强,不适合国情。能针对零售业进行系统化、专业化分析的书籍也不多。作为黄老师多年老友,他认真、踏实的钻研精神,也令我深深折服!
  ——曹志国,志向不凡咨询集团,董事长(新浪微博@曹志国-连锁研究)
  
  ★互联网时代电商对零售行业的影响有目共睹,这个行业的竞争变得越来越激烈,以前的粗放式管理已不适应潮流,我们需要精细管理,这就需要数据,数据是无形资产,也是核心竞争力的基础。本书系统介绍零售行业数据方面的应用思路和实战的数据分析要点,书中模拟实战,同时渗透着数据化思路的引导,相信这本书能让你快速成长!
  ——邓凯,资深数据分析师,新浪微博,资深博主(新浪微博 @数据挖掘与数据分析)
  
  ★用数据来指导和决策商业经营管理,是近期很火的一个概念。但与许多高大上的数据分析挖掘类图书有所不同,在这本书当中并没有堆砌太多的数据分析理论和数理统计公式,而是用通俗易懂的实例和轻便易用的工具来为我们演绎了商业数据化管理的理念和方法,并具有高度的可操作性和可复制性。这本书让我们认识到,商业数据分析很多时候难的不是工具和方法,而是在于对数据敏感的意识、观察数据的角度以及对数据理解的方式。同时,作为一个使用Excel的"熟练工",我在阅读这本书的时候感到了久违的轻松和愉悦,因为它让我找到了Excel这种平民化工具在激发企业生产力和决策力方面的巨大潜力,依托于Excel的数据化管理,大有可为!
  ——方骥,微软有价值专家MVP(新浪微博@Excel大全)
  
  ★随着全零售时代的到来,传统商业的每一个供应链细节都离不开数据的支撑。特别是以C端驱动的供应链模式成为主流的今天,用数字解读顾客需求成为品牌和渠道竞争的核心。本书可以让你学会全面地利用数字化的方式掌握对人、货、场、财等经营管理,特别适合新零售、电商、供应链、大数据的朋友一读!
  ——黄刚,著名物流供应链专家·汉森世纪供应链,总经理(新浪微博@黄刚-物流与供应链)
  
  ★随着电子商务对零售业态的改变,数据已经成为企业竞争力的"核心"。对于企业来说掌握市场环境、营销流量、运营管理、客户关系的数据越多、越立体化,越可以精细化企业管理。《数据化管理》一书从"人、货、场"的维度,为我们呈现了真实的零售数据世界。希望大家可以通过本书的学习,提升自身对数据的理解和企业运营效率。
  ——海云飞,艾瑞咨询集团,艾瑞学院总监
  
  ★本书通过几个人对实际业务的探讨展开了数据驱动业务的有趣旅程。既有数据分析逻辑、基础指标计算和对比方法,又具备数据分析技巧,涵盖数据分析从入门到高级再到精深的各个阶段,其中数据分析立体化无疑是数据分析的重要指导思想,从由小到大,由局部到整体的立体化,到通过增加不同维度实现立体化的思考,为数据分析从业者提供很好的思路和借鉴。在立体化逻辑的基础上,再从不同维度的数据指标组合中找寻业务解释,为企业提供更多的决策和效率优化依据!
  ——罗盎,微博数据中心,总监(新浪微博@五洲红)
  
  ★不懂数据,就做不好生意;不懂大数据,就做不成大生意!数据是生意经营过程的量化结果,里面蕴含着不为人一眼察觉到的奥秘。通过洞悉数据背后的逻辑、规律、趋势和洞见,可以更好地读懂过去、了解现在、预见未来!在这本书中,我们可以深刻感受到黄老师对数据的解读深度、对分析方法的不倦追求、对生意逻辑的深刻洞察!推荐各行各业的企业家、高管们,都好好读一读这本帮你读懂生意、发现生意的专业书!
  ——穆兆曦,优识营销学院,院长
  
  ★无论是传统领域里的企业人,还是基于互联网技术发展起来的电商公司,更包括了大量的IT、科技公司,对于数据化的概念,向来是敞开怀抱热烈欢迎。这一方面是,在实际的业务中,数据真得给予了企业者更理性化、系统化管理业务的支撑点,另外一个因素则有些窘迫:关于数据管理的知识总显得太过严谨生涩而让人难以轻松接受。这次的新书,数据君一如既往地保持着通俗有趣的写作风格,并且不再受到篇幅的限制,可以酣畅淋漓地把案例一个个穿插在理论中,就算是刚接触数据的新人,都可以通畅地阅读。实在是目前市面上,将数据化管理接地气的一本书啦!
  ——强音,i天下网商,主编
  
  ★在经济学中,经典的概念是"看不见的手",这是所有微观经济学及市场经济的核心。"看不见的手",是一种对于市场的敬畏,也是对于市场中多方博弈的一个总结。而这个经典的概念,正在被另外一个更加重要的概念所替代"看得见的数据",也就是所谓的"数据赋能"。伴随着互联网的发展,尤其是移动互联网的发展,市场的每一个细节都将数据化、智能化。
  数据的力量正在展现,数据对于商业的价值,就像电子对于科技的价值,正在一步步成为商业的现实。而在整个数据的商业应用中,价值化的是电子商务。
  在阿里巴巴的平台上,商家在经营淘宝店铺时,有两个重要的数据平台,一个是量子恒道,以本店铺的所有营销、客户、商品信息为基础;二是数据魔方,涉及全网的行业数据,包括爆款、行业指数等方面。除此以外,还延伸出大量的数据化的工具与公司,这点都是因为互联网非常透明的竞争,数据就是精细化运营的基础。
  在O2O的领域也是如此,O2O是商务电子化的过程,也就是将所有的商务环节数据化与智能化,提升效率,节约成本,挖掘新需求。
  @数据化管理,是对于商务数据化与智能化的一个系统的探索与思考,开启了一个新的商业思考的维度,值得我们在商业巨变的时代,掌握时代的潮流与商业的未来。
  ——天机,阿里巴巴集团,O2O项目品牌商负责人
  
  ★大数据时代已悄然来临,那些默默沉睡在服务器上的陈年旧数一夜间身价倍增。现在市面上已经有很多关于大数据、数据挖掘等的各类书籍了,本书却非常新颖和务实地聚焦在"如何利用数据及数据挖掘分析方法来支持企业各项管理工作"。而这种视角,对于我们连锁零售百货公司非常有价值。新世界百货从1993年来大陆开店,至今已经有21年的历程,在我们的后台服务器上积累了海量的中国各个城市消费者的消费记录,同时我们已经拥有超过300万的VIP会员,他们21年的消费行为、消费习惯,以及这种行为和习惯的变迁,都刻录在存储器上。我们一直在思考如何挖掘这些堪比石油的数据矿。本书的问世给我们带来了一种欣喜和尝试的冲动。
  ——王宝军,新世界百货中国有限公司企业管理服务部,总经理
  
  ★零售界著名的数据化管理培训师兼好友黄成明出书了!可喜可贺!一向与成明私交甚笃,有感于他这几年厚积薄发、真材实料的飞速发展,特地向大家推荐本书!
  ——吴子恒,中国零售界及商业地产界微博,博主(新浪微博 @Hermann中国零售微博)
  
  ★行业资深人士,都有一个共同点:观市势,而创己道;填万坑,而成己法。黄老师浸泡零售行业20余年,将运营归结为"人货场"三方面,并采用一套缜密的数据分析方法分解落地。道法合一,基于"人货场"思维的立体化,在介绍各种分析方法的同时,将各种"坑"逐一呈现,值得一阅。
  ——杨帆,唯品会,商业智能高级总监
  
  ★优秀的数据分析师要求五懂,即要懂业务、懂管理、懂分析、懂工具、懂设计,本书为五懂结合应用的结晶。
  ——张文霖,《谁说菜鸟不会数据分析》作者(新浪微博@小蚊子乐园)

目录

第 1 章 什么是数据化管理
1.1 "聪明"的销售人员
1.2 数据化管理的概念
1.3 数据化管理的意义
1.4 数据化管理的四个层次
1.4.1 业务指导管理
1.4.2 营运分析管理
1.4.3 经营策略管理
1.4.4 战略规划管理
1.5 数据化管理流程图
1.5.1 分析需求
1.5.2 收集数据
1.5.3 整理数据
1.5.4 分析数据
1.5.5 数据可视化
1.5.6 应用模板开发
1.5.7 分析报告
1.5.8 应用
1.6 数据化管理应用模板


















第 2 章 寻找零售密码
2.1 周权重指数
2.1.1 寻找店铺零售规律
2.1.2 周权重指数
2.1.3 周权重指数的计算
2.1.4 日权重指数的特殊处理
2.2 周权重指数的应用
2.2.1 判断零售店铺销售规律辅助营运
2.2.2 分解日销售目标
2.2.3 月度销售预测
2.2.4 销售对比
2.3 神奇的黄氏曲线--单位权重(销售)值曲线
2.3.1 单位权重(销售)值曲线
2.3.2 应用在销售追踪过程中
2.3.3 特殊事件的量化处理
2.3.4 促销活动的分析及评估
2.3.5 新产品上市的分析及评估
2.3.6 其他应用
2.4 案例及应用--数据化排班



















第 3 章 销售中的数据化管理
3.1 销售都是追踪出来
3.1.1 没有目标管理就没有销售的最大化
3.1.2 没有标准就没有追踪的依据
3.1.3 如何用数据化追踪销售
3.1.4 销售追踪注意事项
3.2 常用的销售分析指标
3.2.1 人货场是零售业基本的思维模式
3.2.2 零售业常用的分析指标
3.2.3 如何确定指标的重要性
3.3 提高销售额的杜邦分析图
3.3.1 路过人数
3.3.2 进店率
3.3.3 成交率
3.3.4 平均零售价
3.3.5 销售折扣
3.3.6 连带率
3.4 促销中的数据化管理
3.4.1 影响冲动购买的因素有哪些
3.4.2 零售业常用的促销方式
3.4.3 促销活动的准备、执行和评估
3.5 案例及应用




















第 4 章 商品中的数据化管理
4.1 常用的商品分析指标
4.1.1 商品分析的基本逻辑
4.1.2 常用的商品分析指标
4.1.3 伤不起的售罄率
4.1.4 再谈如何确定指标间的重要性
4.2 常用的商品分析方法
4.2.1 商品的自然分类方法
4.2.2 商品的销售分类方法
4.2.3 商品的价格分析
4.2.4 商品的定价策略
4.3 商品的关联销售分析
4.3.1 商品的关联程度分析
4.3.2 购物篮分析
4.3.3 提高商品关联度的方法
4.4 商品的库存管理
4.4.1 库存分析逻辑
4.4.2 异常库存管理
4.4.3 设置库存预警条件
4.5 商品的利润管理
4.5.1 谁在决定商品的利润
4.5.2 商品的现值
4.5.3 库存的现值分析法
4.6 案例分享


第 5 章 电子商务中的数据化管理
5.1 数据分析是电商营运的指路明灯
5.1.1 电子商务和传统零售数据分析的区别
5.1.2 电商数据分析需要的数据
5.1.3 电商数据来源及分析工具
5.2 电商数据分析指标
5.2.1 流量指标
5.2.2 转化指标
5.2.3 营运指标
5.2.4 会员指标
5.2.5 财务指标
5.2.6 关键指标
5.3 流量及会员数据分析
5.3.1 流量及转化的漏斗图分析
5.3.2 对比发现有质量的流量
5.3.3 电商销售额诊断
5.4 案例分析


第 6 章 零售策略中的数据化管理
6.1 渠道策略的数据化管理
6.1.1 如何科学地将渠道分类
6.1.2 渠道拓展分析
6.1.3 渠道的管理指标
6.2 会员策略的数据化管理
6.2.1 会员数据分析
6.2.2 会员价值分析
6.2.3 会员的生命周期管理
6.2.4 会员购买行为的研究
6.3 竞争对手分析
6.3.1 谁是你的竞争对手
6.3.2 如何收集竞争对手的数据
6.3.3 竞争对手的分析方法
6.4 营运策略的数据化管理
6.4.1 如何做销售预测
6.4.2 如何制定年度销售目标
6.5 案例分享
6.5.1 整理思路
6.5.2 界定问题
6.5.3 收集数据
6.5.4 分析数据


第 7 章 必知必会的数据分析方法
7.1 数据分析的立体化
7.1.1 数据分析必须立体化
7.1.2 三维分析之点-线-面
7.1.3 三维分析之时间-对象-指标
7.1.4 三维分析之人-货-场
7.1.5 三维分析之广度-宽度-深度
7.2 数据没有可对比性就没有数据分析
7.2.1 被滥用的同比和环比
7.2.2 伤不起的各种"率"
7.2.3 她真的是销售冠军吗
7.3 常用的数据分析方法
7.3.1 如何设定指标的权重
7.3.2 经典的二八法则应用
7.3.3 ABC分析方法
7.3.4 排行榜分析方法
7.3.5 你真的了解平均值吗
7.4 数据展示也是一种分析方法
7.4.1 Excel图表的展示逻辑
7.4.2 不一样的雷达图
7.4.3 清清爽爽的K线图
7.4.4 高端大气的热力图
7.4.5 四象限图的策略思维


第 8 章 如何建立数据化管理模型
8.1 数据化管理应用模板
8.1.1 自定义区域
8.1.2 数据源区域
8.1.3 分析辅助区域
8.1.4 业务预警区域
8.1.5 业务分析区域
8.1.6 报告展示区域
8.2 搭建数据化管理模板必会的Excel十大技巧
8.2.1 必须要掌握的54个函数
8.2.2 数据透视表
8.2.3 自动排名
8.2.4 四象限图
8.2.5 智能提醒
8.2.6 PPT随Excel图表自动更新
8.2.7 密码保护
8.2.8 控件和VBA的使用
8.2.9 名称管理器
8.2.10 如何隐藏数据


后记
附录 测试你对数据敏感度的答案

精彩书摘

  2.2.2分解日销售目标
  新春天集团旗下有39家百货商场、79家超市以及一个B2C的在线购物网,一共是119家店铺。零售店铺的目标管理是零售管理的重心,根据集团CEO的要求,必须将目标分解到可执行的最小单元的原则,新春天的习惯做法是,先将年目标分解到各店铺,再拆分成12个月,依次分到各楼层(百货商场)或各业务组(超市),百货商场还会细化到品牌。
  在2012年以前我们的目标基本就细化到月和到品牌,从2012年开始,我要求所有分店必须根据周权重指数将每月目标细化分解到日。这样的好处是可以按天来追踪销售完成状况,同时都采用周权重指数标准流程,所以便于店铺间日目标是有对比性的。
  杰克:柯北,你知道销售人员最怕什么吗?
  柯北:我觉得销售人员应该最怕“老板”吧?我昨天跟着徐总去北京知春里超市巡场,发现店铺主管都很紧张。徐总问营运主管在洗化类商品中哪一个SKU6上周销量第一,营运主管居然迟疑了一下才回答说是某品牌牙膏。实际上她回答错了,徐总出发前让我查过这个数据的。
  ……

前言/序言

  测试你对数据的敏感度
  五一刚过,北京某大学校园内来了几个人,他们是新春天连锁商业有限集团公司负责校园招聘项目的员工。而此时阶梯教室早已坐满了慕名而来的同学,他们是被这样一张海报吸引过来的:
  We want you
  我们不在乎你学的是什么专业,我们也不在乎你是男是女,但是我们在乎:
  你是否对未来的工作充满幻想和期待?
  你是否对数据有足够的敏感度?
  你是否有很强的逻辑思维能力?
  如果有,我们5月7日14:00阶梯教室见!
  招聘会中将有资深职场人士分享"如何提高你对数据的敏感度"等内容。
  我们是新春天连锁商业有限集团公司,中国50强零售企业。我们的总部在北京,我们的主要业务来源于百货、超市和电子商务。
  14:00新春天校园招聘会准时开始,例行发言后,主持人给每位同学发了一张笔试卷子。要求10分钟内完成,不能使用计算器或者具有计算功能的手机等(友情提示:最好是心算)。
  亲爱的读者,准备好纸和笔,你也一起来测试下自己对数据的敏感度吧。
  第一部分:请判断下面的描述是正确的、错误的还是不能确定。
  ① 某公司业务员小强有24个客户,4月不重复客户购买比率为78%。(注:不重复客户购买比例=有订单的客户总数÷总客户数,重复购买的客户只算一次)
  ② 我国城镇住房建设较快发展,人均住宅建筑面积升至26.11m2(北京市为32.68m2),户均住宅建筑面积为83.2m2。同时,城镇住宅建筑面积达到历史最高的300.16亿m2。
  ③ 2013年4月,某品牌在某地区销售同比增长32%,该地区的三个客户分别完成销售23.8万元、36.8万元、27.0万元,去年同期他们分别完成销售18.3万元、28.8万元、20.9万元。(注:该地区只有三个客户)
  ④ 某学校200名同学全部参与了优秀学生干部的选举活动,最后李刚同学以88.8%的投票支持率当选。(注:共5名候选者,每位同学只能选择支持1位,候选者也可以参加投票)
  ⑤ 国家统计局发布的《2009年国民经济和社会发展统计公报》显示,2009年70个大中城市房屋销售价格上涨1.5%,其中新建住宅价格上涨1.3%,二手住宅价格上涨2.4%,房屋租赁价格下降0.6%。
  ⑥ 2012年,某公司各部门员工离职率分别为:销售部125%,市场部48%,物流部26%,人事部0%。
  ⑦ 甲、乙两单位进行大学生招聘,只要两单位的女性录用率分别都高于男性录用率,就能确保两单位的总录用率女性高于男性。(注:录用率=录取人数÷应聘人数×100%)
  ⑧ 2011年8月,京沪高铁开通运营一个月以来,共开行动车组列车5542列,日均179列;运送旅客525.9万人,日均17万人,平均上座率为107%。
  ⑨ 345678+13897+6732+19753+685454+23988+348766+768=1445038
  第二部分:请找到如下数字的规律,并将正确答案填到括号中。
  ① 11,27,66,146,()
  ② 5,5,9,17,29,()
  ③ 3,4,6,10,()
  ④ 65,8,50,15,37,24,()
  第三部分:请运用加减乘除和括号计算如下试题,要求计算结果是24,同时要求每题用两种方法。
  ① 5,8,9,2
  ② 6,6,8,3
  ③ 3,5,7,8
  测试题答案请见附录,总分20分。
  15分钟之后,一位英俊潇洒的帅哥走上了讲台。他叫杰克,新春天集团总裁特别助理,主要负责集团的数据化管理项目,也是这次校园招聘项目MT(Management Trainee,管理培训生)的导师。杰克以严谨、严厉、严格著称,被下属取绰号"严三儿"。
  杰克上台后环顾了一下全场,场下是数百位同学在等待他的演讲。
  大家好,我叫杰克。我今天第一个问题是:有谁知道数字、数值和数据的区别吗?
  同学A:数字就是阿拉伯数字,而数据应该和数值差不多吧?
  同学B:我认为数据和数值不一样,比如我数学考了88分,88是数值,而88分就应该是数据。
  杰克:不错,综合你们的说法就是答案。数字是阿拉伯数字,只是计数符号,数据是有背景的数值,这个背景一般以单位来体现。例如,2013年5月5日新春天集团王府井店营业额是人民币3686万元,3、6、8、6是数字,3686是数值,人民币3686万元就是数据。
  如果你们能进入新春天集团的数据部门工作,那你们就会每天面对各种数据。
  我的第一份工作是做销售经理的助理,天天负责给销售团队做各种报表,也就是大家熟知的"表哥"。刚开始的时候,非常痛苦,辛苦半天做好的报告被经理一秒钟就给打回来了,说里面有错误,并且还不告诉我具体错在什么地方了。于是我又不得不花上一些时间去找那个该死的错误值。时间长了我就总结出一些快速找到数值(注意不是数据)错误的方法。
  请大家在30秒内选择出下面这4道题的正确答案,前提是不能用计算器:
  ① 345678+13897+6732+19753+685454+23988+348766+768=
  A1445035 B1445036C1445037D1445063
  ② 3872×68=
  A263296 B283296 C 193296 D213296
  ③ 1258×308=
  A38764 B3874064C 3870464 D387464
  ④ 12837+9235+432867+235=
  A435174 B489174C 455174 D555174
  说实话,我现在非常感谢我的这位领导对我的磨练,他用一种特殊的方法让我快速融入到数据之中。你们进入社会以后也需要这种磨练才能快速成长,这样能迫使自己快速进入状态,找到对数据的感觉。心算是找数据感觉的一种方法,并且在很多场合,例如在商务谈判时,在听别人做销售报告时,下属向你汇报工作时……你好意思拿出计算器来吗?所以我们需要掌握一套判断数字运算结果是否错误的速判法。这种方法虽然不能准确知道正确的结果是什么,但是可以快速判断哪些结果肯定是错误的。
  如何快速识别真假数值?
  ◆尾数法:只看最后一位数字,尾数相互加减乘除后的结果必须满足对应的算术规律。例如①所示,我们可以快速判断尾数应该是6,所以ACD肯定是错误的。
  ◆首位法:只看每个数值的第一个数字,相乘或相加,结果需要满足或近似满足四则运算规律。例如所示,首位数字近似于4乘以7,计算结果②应该靠近且小于28,所以BCD是错误的。
  ◆数位法:通过数每个数值的位数来判断计算结果是否正确。例如所示,4位数乘以3位数结果应该是6或者7位,而③题中的两个数值偏小,所以结果应该是6位。从而判断ABC都是错误值。
  ◆极值法:在求和运算中,最大值左右了运算结果,所以通过对比最大值和运算结果大致就能做出判断。例如④利用此法很容易就能判断ABD是错误的。
  "So easy,我们在小学就会这些了!"突然从人群中冒出一句话,随即引起了同学们的哄堂
  大笑。杰克平静地看着大家,等大家安静下来后才继续。
  杰克:我曾经在不同的企业、不同的层面,把上面几组错误的数据嵌套到销售报告中做测试,遗憾的是,只有少数人发现了其中的错误数据,这个比例不到5%,因为大家已经将这些知识"还给"小学数学老师了。我相信到时候你们中的大部分人也会犯这种错误,因为大部分人没有数据思维,也没有养成对数据的质疑精神,这种精神不是学出来的,而是练出来的。
  如何提高自己数据化思维的意识?
  包括三个方面:对数据的敏感度、数据化思维意识以及习惯用数据说话,可以从主动和被动两方面来提高。
  ◆主动提高
  玩数字游戏:什么24点1、数独等都统统可以有。刚开始工作的那几年,在每天上下班的路上,我常常一个人盯着公交车外一闪而过的汽车尾部牌照玩24点,很有效。最后我可以做到
  在下一辆车出现之前就能算出前一辆车牌照号的24点。
  1 24点规则:随机抽取4个整数(一般是1~9之间的数字,可以重复),运用加减乘除等运算法则,最后得到结果必须是24。
  多看财经类的新闻报道:当看到数据的时候,多想一想,花点时间思考一下,还可以通过搜索、查证、逻辑判断等来证明这些数据是正确或错误的。
  学会质疑:不迷信不盲从专家的数据,养成独立思维的习惯。
  记大数、关键数、异常数等:在业务过程中多记一些有用的数据会让你显得更专业,时间长了对数据的感觉就出来了。
  当然每个人都有适合自己的方法,找到它坚持下去,时间长了这就会变成一种能力。很多女孩子总是认为自己对数据敏感度低是天经地义的,其实这是用心不够。
  ◆被动提高
  杰克:被动总是一件很痛苦的事情,我服务的第一家公司是一家号称具有浓郁报表文化的美国公司。当时我平均每天需要做10~20张左右的报表,在那个没有电脑、报表只能靠手工传真的年代,大家可以想象这是一个多么宏大的工程。
  若干年前的某个夏天,我在主持某品牌服装北京地区销售周例会的时候,有个商场当周销售额环比下降了18%,店长解释的原因是天气太热,顾客都不愿意逛商场,客流量下降,所以销售额也必然下降。有意思的是当周有个商场销售额环比上升了15%,而这位店长给出的原因也是天气。天气太热顾客都喜欢逛商场,因为可以享受凉爽的空调,平均停留时间增加,所以销售额上升。
  2012年8月28日,我在新浪微博写了这样一条,如图Q-1所示。
  图Q-1 微博图片
  "So easy!"不知道哪位同学又冒出一句,又是哄堂大笑。
  杰克微笑地看着大家:很多职场人士遇到问题的时候,不是主动找问题的原因,而是习惯性地编故事。我做过统计,当销售表现不好的时候,有25.7%的人会归结于天气,有22.1%的人会归结于客流,就是没有顾客,有18.5%的人会归结于商品的原因……为了帮助这个公司的同事更快地提高数据化思维,我做了一个艰难的决定,必须强迫他们养成用数据说话的习惯。
  ① 培训:我们准备了专业的数据课程培训,同时我还安排了公司数据分析中心的同事每月给大家上课。
  ② 做表:每天做5张表,包括日销售分析表、月销售预测表、商品数据汇总分析表、会员数据汇总分析表、竞争对手数据调查表。这是我当时强制留给店长们的作业,他们报表交上来后,我会不断地给他们"挑错"。三个月后再看大家对数据的感觉,效果相当不错。
  ③ 诱惑:三个月后我把上面的5张表整合成一个店铺管理模板,我在里面植入了各种销售和商品的分析及各种算法。只需要店铺每天录入几个数据,其他的模板自动生成,如图Q-2所示。通过模板诱惑他们主动去分析,这时候提高的就是店长的综合分析能力。
  图Q-2 店铺管理模板(部分)
  ④ 换岗:经过前三步的培养之后,对于那些实在不愿意改变的同事,这是下下策的安排。
  数据思维是一个不断训练提高的过程,然后放到业务环境中去思考问题,数学成绩的好坏并不是我们这次招聘的必备条件。
  祝大家好运!


洞悉瞬息万变的市场:策略、创新与执行的深度解析 本书深入探讨了在当今复杂多变的市场环境中,企业如何构筑坚实的战略基础,拥抱颠覆性创新,并高效执行各项决策,从而实现可持续增长的秘密。它并非聚焦于某个特定行业的运营细节,而是从更宏观、更普适的视角,揭示了成功企业的共性法则,以及领导者在不断变化的商业格局中应有的思维方式和行动指南。 第一篇:战略的基石——在不确定性中寻找方向 在信息爆炸、技术迭代加速的时代,清晰且灵活的战略规划是企业生存与发展的生命线。本篇将带领读者穿越战略制定的迷雾,重塑对企业定位、目标设定以及资源配置的认知。 第一章:企业愿景与使命的再定义:穿越周期的驱动力 企业存在的意义,远不止于盈利。本章将聚焦于如何提炼出真正驱动企业前进的愿景与使命。我们将探讨: 愿景的“道”与“术”: 如何构建既宏大又可实现的愿景,使其成为全体员工共同追逐的灯塔?这涉及到对社会趋势、技术前沿以及消费者需求的深刻洞察。 使命的价值主张: 企业的使命应如何体现在其产品、服务和客户关系中?我们将分析那些拥有强大使命感企业的成功案例,以及它们如何通过价值传递赢得市场。 价值观的文化粘合剂: 价值观在企业战略中的角色是什么?如何将核心价值观内化为员工的行为准则,形成强大的企业文化,从而在压力之下保持一致性? 战略一致性的关键: 愿景、使命与日常运营之间存在的潜在脱节,往往是战略执行失败的根源。本章将提供实操方法,确保从高层决策到一线执行的每一个环节,都与企业的核心目标保持高度一致。 第二章:市场定位的艺术:在竞争中脱颖而出的关键 市场定位并非简单的“我是谁”,而是“我如何让客户选择我”。本章将剖析如何在激烈的市场竞争中,找到并巩固自己的独特优势。 目标市场的深度剖析: 超越人口统计学,深入理解客户的痛点、需求、购买动机以及情感偏好。我们将介绍几种有效的情感化用户画像构建方法。 差异化策略的实证: 价格、品质、服务、品牌形象……哪种差异化是可持续的?本章将通过大量案例,解析不同差异化策略的优劣势,以及如何将其转化为企业的核心竞争力。 价值链的战略重塑: 从产品设计、生产、营销到售后,企业如何在价值链的各个环节创造并传递独特的价值?我们将探讨如何通过战略性地优化价值链,构建难以被模仿的竞争壁垒。 动态定位与再定位: 市场瞬息万变,固步自封的定位注定被淘汰。本章将提供应对市场变化的策略,以及在必要时如何进行成功的企业再定位。 第三章:战略选择的智慧:聚焦与权衡的艺术 资源永远是有限的,战略的核心在于选择。本章将帮助读者掌握在众多可能性中做出明智战略选择的决策框架。 SWOT分析的深化运用: 如何超越基础的SWOT分析,挖掘其背后更深层次的战略含义?我们将探讨如何将SWOT转化为可执行的战略性举措。 波特五力模型的动态解读: 如何理解并应对行业内的竞争压力、潜在进入者、替代品威胁、买方议价能力和供应商议价能力?本章将强调五力模型在动态市场中的应用。 核心能力与竞争优势的识别: 哪些能力是企业真正的核心,能够带来持久的竞争优势?本章将提供识别和培育核心能力的系统方法。 战略协同与组合优化: 当企业拥有多元化业务时,如何确保各业务板块之间产生战略协同效应,而非资源分散?我们将探讨如何通过战略组合管理,实现整体效益最大化。 机会成本与风险评估: 任何战略选择都伴随着机会成本和潜在风险。本章将介绍如何系统性地评估战略选择的收益与风险,做出最优决策。 第二篇:创新的驱动——在变革中引领潮流 创新不再是可选项,而是企业在新时代保持生命力的必选项。本篇将深入探讨创新的本质,以及如何在组织内部建立持续创新的机制。 第四章:创新思维的培养:打破思维定势的藩篱 创新并非少数天才的专利,而是可以通过系统性培养和环境营造来实现。本章将聚焦于如何打破思维定势,激发全体员工的创新潜能。 颠覆性思维的认知: 什么是颠覆性创新?它与渐进式创新有何区别?本章将通过案例解析,帮助读者理解颠覆性创新的逻辑和力量。 “无知之知”与好奇心的力量: 承认自己的不足,保持对未知的好奇,是创新的起点。本章将探讨如何鼓励员工提出“为什么”,质疑现状,从而发现潜在的创新机会。 用户导向的创新: 创新是否必须从技术出发?本章将强调以用户需求为核心的创新方法,如设计思维(Design Thinking)的实践应用。 跨界融合与知识碰撞: 创新往往发生在学科、领域之间的交叉点。本章将介绍如何通过跨部门合作、外部交流等方式,促进知识的碰撞和融合,激发新的创意。 鼓励试错的文化: 创新必然伴随着失败。本章将探讨如何构建一种鼓励尝试、允许失败、并从中学习的企业文化,让创新不再是高风险的冒险。 第五章:创新机制的构建:从灵感火花到商业价值 将创新的火花转化为可持续的商业价值,需要系统性的机制支撑。本章将深入探讨如何构建有效的创新体系。 内部孵化与外部合作: 企业内部的创新项目如何管理?如何通过战略投资、合资、收购等方式,引入外部创新资源? 创新流程的设计与优化: 从想法产生、概念验证、原型开发到商业化推广,每个环节的关键控制点是什么?本章将提供一套可复制的创新流程模型。 创新团队的组建与激励: 如何组建多元化、高效率的创新团队?如何通过合理的激励机制,激发团队的创造力和执行力? 开放式创新(Open Innovation): 如何利用外部智慧和资源,加速创新过程?本章将介绍开放式创新的模式和成功实践。 知识管理与创新传承: 如何将创新过程中的经验教训、成功模式固化下来,并有效地传承给下一代? 第六章:科技赋能的创新:拥抱数字化浪潮 数字技术正以前所未有的速度重塑商业模式和用户体验。本章将聚焦于科技如何成为创新的重要驱动力。 大数据与用户洞察: 如何利用大数据技术,深入理解用户需求、行为模式,并从中挖掘创新机会? 人工智能(AI)的应用场景: AI在产品研发、客户服务、运营效率提升等方面有哪些颠覆性的应用? 平台化与生态系统的构建: 如何通过构建技术平台,吸引第三方开发者,共同创造新的产品和服务? 虚拟现实(VR)/增强现实(AR)的未来: 这些新兴技术将如何改变用户体验和商业模式? 敏捷开发与快速迭代: 如何运用敏捷开发方法,缩短产品上市周期,快速响应市场变化? 第三篇:执行的落地——让战略与创新不再纸上谈兵 再好的战略和再伟大的创新,如果不能有效执行,都将是空中楼阁。本篇将聚焦于如何将战略意图转化为切实的商业成果。 第七章:卓越的执行力:让愿景成为现实 执行力是企业战略落地的生命线。本章将剖析卓越执行力背后的关键要素。 目标设定的SMART原则与OKRs: 如何设定清晰、可衡量的短期和长期目标?我们将深入解析OKR(Objectives and Key Results)这一强大的目标管理工具。 责任分解与问责机制: 如何将宏大目标分解到具体的部门和个人?如何建立有效的问责机制,确保责任到人,不推诿? 资源分配的战略优先级: 如何确保有限的资源被投放到最关键的战略项目上?本章将提供资源优化配置的方法。 关键绩效指标(KPIs)的有效设计与追踪: 何为真正能够驱动业务增长的KPIs?如何确保KPIs的设定与企业战略目标高度契合? 执行中的障碍识别与排除: 组织惯性、信息不对称、部门壁垒……如何识别并有效解决执行过程中的常见障碍? 第八章:组织变革的艺术:拥抱变化,持续进化 市场变革要求企业组织也必须随之变革。本章将探讨如何成功推行组织变革,提升企业的适应性。 变革驱动与阻力管理: 如何激发员工对变革的认同感和主动性?如何有效地识别和化解变革中的阻力? 组织结构的设计与优化: 传统的层级式组织是否还能适应快速变化的市场?本章将探讨扁平化、网络化等新型组织模式。 人才战略与能力发展: 变革要求组织具备新的能力。如何通过人才引进、培养和发展,支撑组织的转型? 沟通与参与: 变革过程中的有效沟通至关重要。本章将强调如何建立透明、开放的沟通机制,鼓励员工参与变革。 变革的持续性: 变革并非一次性的事件,而是需要持续进行的。本章将探讨如何建立持续学习和改进的组织文化。 第九章:数据驱动的决策:洞察与行动的桥梁 在本篇的最后,我们将回归到“数据”这一核心主题,但并非聚焦于具体的技术工具,而是强调“数据思维”在执行中的重要性。 数据采集的战略意义: 哪些数据对企业战略执行最关键?如何确保数据的准确性、完整性和及时性? 数据分析与洞察: 如何从海量数据中提炼出有价值的洞察?本章将强调数据分析与业务问题的深度结合。 数据可视化的力量: 如何通过直观的可视化图表,将复杂的数据转化为易于理解的决策依据? 基于数据的行动: 洞察的最终目的是指导行动。本章将强调如何将数据分析结果转化为具体的执行方案和调整措施。 建立数据驱动的决策文化: 如何在组织内部培养普遍的数据分析和应用能力,让数据成为日常决策的基石? 结语: 本书旨在为广大企业经营者、管理者以及对商业战略感兴趣的读者,提供一套全面、系统且极具实践指导意义的商业哲学和方法论。它不提供一个放之四海而皆准的“标准答案”,而是引导读者思考,启发读者行动,帮助他们在瞬息万变的商业世界中,构建自身的竞争优势,实现持续的成功。

用户评价

评分

这本书的内容引起了我极大的兴趣,尤其是在“数据化管理”这个核心主题上。我一直认为,在瞬息万变的零售和电子商务领域,数据是洞察市场、优化决策的关键。我非常期待书中能够深入探讨如何构建一套有效的数据采集、清洗、分析和应用体系。特别是关于如何将海量、多维度的数据转化为 actionable insights(可执行的洞察),这对我来说是最大的挑战。我希望书中能提供一些具体的案例研究,展示不同规模的零售和电商企业是如何利用数据驱动增长的,例如在客户获取、留存、以及个性化推荐等方面。我尤其关注书中关于数据安全和隐私保护的论述,在数据日益重要的今天,这方面的内容同样至关重要。这本书能否为我提供一套系统性的方法论,帮助我在实际工作中更好地运用数据,是我最为期待的。

评分

我是一名市场营销从业者,长期以来,我一直在思考如何将营销活动的效果量化,并以此为基础进行优化。这本书的书名《数据化管理:洞悉零售及电子商务运营》让我眼前一亮。我相信,零售和电商行业的数据化管理经验,对于我们营销领域同样具有重要的借鉴意义。我希望书中能够提供关于如何衡量和分析营销渠道效率的洞察,比如如何通过数据分析来判断哪些广告投放更有效,以及如何计算不同营销活动的投资回报率(ROI)。我也对书中可能涉及到的关于用户画像构建和细分营销策略的讨论很感兴趣,这有助于我更精准地触达目标客户。我期待这本书能够给我带来一些新的视角和实用的工具,帮助我提升营销决策的科学性和有效性,最终实现营销目标的达成。

评分

我一直觉得,在当今这个信息爆炸的时代,如果还凭感觉做生意,那就太落伍了。这本书的书名《数据化管理:洞悉零售及电子商务运营》简直就是为我量身定做的!我一直对如何更科学地理解和管理我的小电商店铺感到困惑。每天看着后台那些冷冰冰的数字,总觉得它们背后隐藏着很多我看不懂的故事。我特别想知道,这本书会教我如何从这些数据里挖掘出关于顾客喜好、购买习惯、以及哪些产品更受欢迎的秘密。我希望它能提供一些具体的操作指南,比如如何设置A/B测试来优化我的产品页面,或者如何利用用户画像来精准投放广告,而不是泛泛而谈。我一直梦想着我的店铺能够像那些大公司一样,用数据说话,一步步优化运营,实现稳健的增长。这本书,或许就是我迈向这个目标的第一块敲门砖。

评分

我最近刚结束一本关于供应链管理的学习,这本书的书名《数据化管理:洞悉零售及电子商务运营》引起了我的注意。虽然我不是直接从事零售或电商业务,但供应链的管理很大程度上也离不开数据。我很好奇这本书会如何将数据化管理的概念应用到库存优化、物流效率提升以及供应商关系管理等方面。我希望书中能提供一些关于如何运用数据来预测市场需求,从而减少库存积压和缺货风险的案例。同时,我也对书中可能涉及到的关于数据采集和整合的挑战以及解决方案感到好奇,因为在实际操作中,数据孤岛和数据质量问题常常是阻碍数据化转型的巨大障碍。这本书的出现,也许能为我拓展数据思维的边界,让我看到数据在不同商业场景下的应用潜力。我期待书中能够提供一些跨行业的通用性原则,即使我的工作领域有所不同,也能从中获得启发。

评分

这本书我还没来得及细读,但是光看目录和前言,我就觉得这本书的作者一定是一位非常有经验的实战派。他/她把“数据化管理”这个听起来有点空泛的概念,拆解得非常具体,并且紧密结合了零售和电子商务这两个我一直很关注的领域。我尤其对关于“客户行为分析”的那几章很感兴趣,不知道作者是如何将那些零散的线上线下数据整合成有价值的洞察的。我平时接触的很多数据分析教程,要么过于理论化,要么就是一些工具的使用技巧,很少有能像这本书这样,直接切中企业运营的痛点,给出明确的管理思路。我非常期待书中关于“转化率优化”和“用户生命周期价值(LTV)”的章节,因为这两个指标直接关系到我的工作绩效。我希望这本书能提供一些切实可行的方法论,而不是停留在概念层面。我一直在寻找一本能够帮助我提升数据驱动决策能力的读物,这本书的定位似乎非常契合我的需求,让我对如何真正利用数据去驱动业务增长有了新的期待。

评分

可以可以可以可以可以

评分

速度挺快的,但书还没来得及看,看完再来评价。

评分

数据化管理是未来很重要的事情,如何挖掘数据有效性还是很有深度的问题

评分

数据分析的一本好书

评分

京东老客户,方便快捷,东西也不错

评分

买回来囤货,还没开始看,希望对工作有帮助。

评分

京东快递,一如既往地好,准时送到,下次还会购买!

评分

这本书,先说质感,纸质效果印刷很清晰;再说内容,非常深入浅出,很实用,受益颇丰。非常棒

评分

发货快,产品很不错,派件员态度很好!

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有